Part Number Hot Search : 
2SB1180A A100K C1145 8599B Q4016LH3 10RIA100 SI4010DY 1N4759
Product Description
Full Text Search
 

To Download M4A3-128128-10VC Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  publication# 17466 rev: j amendment/ 0 issue date: may 1999 mach 4 cpld family high performance ee cmos programmable logic features high-performance, ee cmos 3.3-v & 5-v cpld families flexible architecture for rapid logic designs excellent first-time-fit tm and re? feature speedlocking tm performance for guaranteed ?ed timing central, input and output switch matrices for 100% routability and 100% pin-out retention high speed 5.0ns t pd commercial and 7.5ns t pd industrial 182mhz f cnt 32 to 512 macrocells; 32 to 768 registers 44 to 352 pins in plcc, pqfp, tqfp, bga, or fpbga packages advanced capabilities for easy system integration 3.3-v & 5-v jedec-compliant operations jtag (ieee 1149.1) compliant for boundary scan testing 3.3-v & 5-v jtag in-system programming pci compliant (-5/-55/-6/-65/-7/-10/-12 speed grades) safe for mixed supply voltage system designs programmable pull-up or bus-friendly tm inputs and i/os hot-socketing programmable security bit individual output slew rate control flexible architecture for a wide range of design styles d/t registers and latches synchronous or asynchronous mode dedicated input registers programmable polarity reset/ preset swapping advanced ee cmos process provides high-performance, cost-effective solutions supported by vantis designdirect tm software for rapid logic development supports hdl design methodologies with results optimized for vantis flexibility to adapt to user requirements software partnerships that ensure customer success lattice/vantis and third-party hardware programming support lattice/vantispro tm (formerly known as machpro ) software for in-system programmability support on pcs and automated test equipment programming support on all major programmers including data i/o, bp microsystems, advin, and system general includes mach 4a family advance information
2 mach 4 family notes: 1. for information on the m4-96/96 device, please refer to the m4-96/96 datasheet at www.vantis.com. 2. ?4-xxx?is for 5-v devices. ?4lv-xxx?is for 3.3-v devices. table 1. mach 4 device features 1,2 feature m4-32/32 m4lv-32/32 m4-64/32 m4lv-64/32 m4-96/48 m4lv-96/48 m4-128/64 m4lv-128/64 m4-128n/64 m4lv-128n/64 m4-192/96 m4lv-192/96 m4-256/128 m4lv-256/128 macrocells 32 64 96 128 128 192 256 maximum user i/o pins 32 32 48 64 64 96 128 t pd (ns) 7.5 7.5 7.5 7.5 7.5 7.5 7.5 f cnt (mhz) 111 111 111 111 111 111 111 t cos (ns) 5.5 5.5 5.5 5.5 5.5 5.5 5.5 t ss (ns) 5.5 5.5 5.5 5.5 5.5 5.5 5.5 static power (ma) 25 25 50 70 70 85 100 jtag compliant yes yes yes yes no yes yes pci compliant yes yes yes yes yes yes yes
mach 4 family 3 notes: 1. all information on mach 4a devices is advance information. please contact a lattice/vantis sales representative for details o n availability. table 2. mach 4a device features 1 3.3 v devices feature m4a3-32 m4a3-64 m4a3-96 m4a3-128 m4a3-192 m4a3-256 m4a3-384 m4a3-512 macrocells 32 64 96 128 192 256 384 512 user i/o options 32 32/64 48 64/96/128 68/96/128 128/192 132/160/192 132/160/192/ 256 t pd (ns) 5.0 5.0 5.0 5.0 5.0 5.0 6.5 6.5 f cnt (mhz) 182 182 182 182 182 182 154 154 t cos (ns) 4.0 4.0 4.0 4.0 4.0 4.0 4.5 4.5 t ss (ns) 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 static power (ma) tbd tbd tbd tbd tbd tbd tbd tbd jtag compliant yes yes yes yes yes yes yes yes pci compliant yes yes yes yes yes yes yes yes 5 v devices feature m4a5-32 m4a5-64 m4a5-96 m4a5-128 m4a5-192 m4a5-256 macrocells 32 64 96 128 192 256 user i/o options 32 32 48 64 96 128 t pd (ns) 5.0 5.0 5.0 5.0 5.0 6.5 f cnt (mhz) 182 182 182 182 182 154 t cos (ns) 4.0 4.0 4.0 4.0 4.0 4.5 t ss (ns) 3.0 3.0 3.0 3.0 3.0 4.0 static power (ma) tbd tbd tbd tbd tbd tbd jtag compliant yes yes yes yes yes yes pci compliant yes yes yes yes yes yes
4 mach 4 family general description the mach 4 family from lattice/vantis offers an exceptionally ?xible architecture and delivers a superior complex programmable logic device (cpld) solution of easy-to-use silicon products and software tools. the overall bene?s for users are a guaranteed and predictable cpld solution, faster time-to-market, greater ?xibility and lower cost. the mach 4 devices offer densities ranging from 32 to 512 macrocells with 100% utilization and 100% pin-out retention. both the mach 4 and the mach 4a families offer 5-v (m4-xxx and m4a5-xxx) and 3.3-v (m4lv- xxx and m4a3-xxx) operation. mach 4 products are 5-v or 3.3-v in-system programmable through the jtag (ieee std. 1149.1) interface. jtag boundary scan testing capability also allows product testability on automated test equipment for device connectivity. all mach 4 family members deliver first-time fit and easy system integration with pin-out retention after any design change and re?. with multi-tiered central switch matrices, enhanced logic arrays, intelligent logic allocators with an xor gate and multi-clocking, the mach 4 family has d or t-type registers and latches as well as synchronous/asynchronous logic and ?xible set/reset capabilities. for both 3.3-v and 5-v operations, mach 4 products can deliver guaranteed ?ed timing as fast as 5.0 ns t pd and 182 mhz f cnt through the speedlocking feature when using up to 20 product terms per output (tables 3 and 4). note: 1. c = commercial, i = industrial table 3. mach 4 speed grades device speed grade 1 -7 -10 -12 -14 -15 -18 m4-32/32 m4lv-32/32 c c, i c, i i c i m4-64/32 m4lv-64/32 c c, i c, i i c i m4-96/48 m4lv-96/48 c c, i c, i i c i m4-128/64 m4lv-128/64 c c, i c, i i c i m4-128n/64 m4lv-128n/64 c c, i c, i i c i m4-192/96 m4lv-192/96 c c, i c, i i c i m4-256/128 m4lv-256/128 c c, i c, i i c i
mach 4 family 5 notes: 1. c = commercial, i = industrial 2. all information on mach 4a devices is advance information. please contact a lattice/vantis sales representative for details o n availability. the mach 4 family offers 20 density-i/o combinations in thin quad flat pack (tqfp), plastic quad flat pack (pqfp), plastic leaded chip carrier (plcc), ball grid array (bga), and ?e- pitch bga (fpbga) packages ranging from 44 to 352 pins (tables 5 and 6). it also offers i/o safety features for mixed-voltage designs so that the 3.3-v devices can accept 5-v inputs, and 5- v devices do not overdrive 3.3-v inputs. additional features include bus-friendly inputs and i/ os, a programmable power-down mode for extra power savings and individual output slew rate control for the highest speed transition or for the lowest noise transition. table 4. mach 4a speed grades device speed grade 1, 2 -5 -55 -6 -65 -7 -10 -12 -14 m4a3-32 m4a5-32 ccccc, ic, ic, ii m4a3-64 m4a5-64 ccccc, ic, ic, ii m4a3-96 m4a5-96 ccccc, ic, ic, ii m4a3-128 m4a5-128 ccccc, ic, ic, ii m4a3-192 m4a5-192 ccccc, i c, i c, ii m4a3-256 ccccc, ic, ic, ii m4a5-256 c c c, i c, i i m4a3-384 c c c, i c, i i m4a3-512 c c c, i c, i i table 5. mach 4 package and i/o options (number of i/os and dedicated inputs in table) package m4-32/32 m4lv-32/32 m4-64/32 m4lv-64/32 m4-96/48 m4lv-96/48 m4-128/64 m4lv-128/64 m4-128n/64 m4lv-128n/64 m4-192/96 m4lv-192/96 m4-256/128 m4lv-256/128 44-pin plcc 32+2 32+2 44-pin tqfp 32+2 32+2 48-pin tqfp 32+2 32+2 84-pin plcc 64+6 100-pin tqfp 48+8 64+6 100-pin pqfp 64+6 144-pin tqfp 96+16 208-pin pqfp 128+14 256-ball bga 128+14
6 mach 4 family note: 1. all information on mach 4a devices is advance information. please contact a lattice/vantis sales representative for details o n availability. table 6. mach 4a package and i/o options 1 (number of i/os and dedicated inputs in table) 3.3 v devices package m4a3-32 m4a3-64 m4a3-96 m4a3-128 m4a3-192 m4a3-256 m4a3-384 m4a3-512 44-pin plcc 32+2 32+2 44-pin tqfp 32+2 32+2 48-pin tqfp 32+2 32+2 100-pin tqfp 64+6 48+8 64+6 68+2 100-pin pqfp 64+6 100-ball fpbga 64+6 64+6 68+2 144-pin tqfp 96+16 96+16 144-ball fpbga 96+16 96+16 176-pin tqfp 128+4 128+4 128+4 132 132 200-ball fpbga 128+4 128+4 128+4 208-pin pqfp 128+14, 160 160 160 320-ball fpbga 192 256-ball bga 128+14 192 192 352-ball bga 256 5 v devices package m4a5-32 m4a5-64 m4a5-96 m4a5-128 m4a5-192 m4a5-256 44-pin plcc 32+2 32+2 44-pin tqfp 32+2 32+2 48-pin tqfp 32+2 32+2 100-pin tqfp 48+8 64+6 100-pin pqfp 64+6 144-pin tqfp 96+16 208-pin pqfp 128+14 256-ball bga 128+14
mach 4 family 7 lattice/vantis offers software design support for mach devices in both the machxl and designdirect development systems. the designdirect development system is vantis? implementation software that includes support for all vantis cpld, fpga and spld devices. this system is supported under windows ?5, ?8 and nt as well as sun solaris and hpux. designdirect software is designed for use with design entry, simulation and veri?ation software from leading-edge tool vendors such as cadence, exemplar logic, mentor graphics, model technology , synopsys, synplicity, viewlogic and others. it accepts edif 2 0 0 input netlists, generates jedec ?es for vantis plds and creates industry-standard edif, verilog, vital- compliant vhdl and sdf simulation netlist for design veri?ation. designdirect software is also available in product con?urations that include vhdl and verilog synthesis from exemplar logic and vhdl, verilog rtl and gate level timing simulation from model technology. schematic capture and abel entry, as well as functional simulation, are also provided.
8 mach 4 family functional description the fundamental architecture of mach 4 devices (figure 1) consists of multiple optimized pal blocks interconnected by a central switch matrix. the central switch matrix allows communication between pal blocks and routes inputs to the pal blocks. together, the pal blocks and central switch matrix allow the logic designer to create large designs in a single device instead of having to use multiple devices. the key to being able to make effective use of these devices lies in the interconnect schemes. in mach 4 architecture, the macrocells have been decoupled from the product terms through the logic allocator, and the i/o pins have been decoupled from the macrocells due to the output switch matrix. in addition, more input routing options are provided by the input switch matrix. these resources provide the ?xibility needed to ? designs ef?iently. notes: 1. 16 for mach 4 and mach 4a devices with 1:1 macrocell-i/o cell ratio (see next page). 2. block clocks do not go to i/o cells in m4(lv)-32/32 or m4a(3,5)-32/32. 3. m4(lv)-192/96, m4(lv)-256/128, m4a(3,5)-192, m4a(3,5)-256, m4a3-384, and m4a3-512 have dedicated clock pins which cannot be used as inputs and do not connect to the central switch matrix. i/o pins clock/input pins central switch matrix i/o pins i/o pins dedicated input pins pal block pal block logic allocator with xor output/ buried macrocells 33/ 34/ 36 16 16 clock generator logic array output switch matrix input switch matrix i/o cells 16 16 8 note 1 note 2 note 3 4 pal block 17466g-001 figure 1. mach 4 block diagram and pal block structure
mach 4 family 9 table 7. architectural summary of mach 4 devices table 8. architectural summary of mach 4a devices the macrocell-i/o cell ratio is de?ed as the number of macrocells versus the number of i/o cells internally in a pal block (tables 7 and 8). the central switch matrix takes all dedicated inputs and signals from the input switch matrices and routes them as needed to the pal blocks. feedback signals that return to the same pal block still must go through the central switch matrix. this mechanism ensures that pal blocks in mach 4 devices communicate with each other with consistent, predictable delays. the central switch matrix makes a mach 4 device more advanced than simply several pal devices on a single chip. it allows the designer to think of the device not as a collection of blocks, but as a single programmable device; the software partitions the design into pal blocks through the central switch matrix so that the designer does not have to be concerned with the internal architecture of the device. mach 4a devices m4-64/32, m4lv-64/32 m4-96/48, m4lv-96/48 m4-128/64, m4lv-128/64 m4-128n/64, m4lv-128n/64 m4-192/96, m4lv-192/96 m4-256/128, m4lv-256/128 m4-32/32 m4lv-32/32 macrocell-i/o cell ratio 2:1 1:1 input switch matrix yes yes input registers yes no central switch matrix yes yes output switch matrix yes yes mach 4a devices m4a3-64/32, m4a5-64/32 m4a3-96/48, m4a5-96/48 m4a3-128/64, m4a5-128/64 m4a3-192/96, m4a5-192/96 m4a3-256/128, m4a5-256/128 m4a3-384 m4a3-512 m4a3-32/32 m4a5-32/32 m4a3-64/64 m4a3-128/96, m4a3-128/128 m4a3-256/160 m4a3-256/192 m4a3-192/68, m4a3-192/128 macrocell-i/o cell ratio 2:1 1:1 input switch matrix yes yes input registers yes no central switch matrix yes yes output switch matrix yes yes
10 mach 4 family each pal block consists of: product-term array logic allocator macrocells output switch matrix i/o cells input switch matrix clock generator product-term array the product-term array consists of a number of product terms that form the basis of the logic being implemented. the inputs to the and gates come from the central switch matrix (table 9), and are provided in both true and complement forms for ef?ient logic implementation. because the number of product terms available for a given logic function is not ?ed, the full sum of products is not realized in the array. the product terms drive the logic allocator, which allocates the appropriate number of product terms to generate the function. logic allocator within the logic allocator, product terms are allocated to macrocells in ?roduct term clusters.? the availability and distribution of product term clusters are automatically considered by the software as it ?s functions within a pal block. the size of a product term cluster has been optimized to provide high utilization of product terms, making complex functions using many product terms possible. yet when few product terms are used, there will be a minimal number table 9. pal block inputs device number of inputs to pal block m4-32/32 and m4lv-32/32 m4-64/32 and m4lv-64/32 m4-96/48 and m4lv-96/48 m4-128/64 and m4lv-128/64 m4-128n/64 and m4lv-128n/64 33 33 33 33 33 m4-192/96 and m4lv-192/96 m4-256/128 and m4lv-256/128 34 34 m4a3-32/32 and m4a5-32/32 m4a3-64/32 and m4a5-64/32 m4a3-96/48 and m4a5-96/48 m4a3-128/64 and m4a5-128/64 33 33 33 33 m4a3-192/96 and m4a5-192/96 m4a3-256/128 and m4a5-256/128 34 34 m4a3-64/64 m4a3-128/96 and m4a3-128/128 m4a3-192/68 and m4a3-192/128 m4a3-256/160 and m4a3-256/192 m4a3-384 m4a3-512 36 36 36 36 36 36
mach 4 family 11 of unused?r wasted?roduct terms left over. the product term clusters available to each macrocell within a pal block are shown in tables 10 and 11. each product term cluster is associated with a macrocell. the size of a cluster depends on the con?uration of the associated macrocell. when the macrocell is used in synchronous mode (figure 2a), the basic cluster has 4 product terms. when the associated macrocell is used in asynchronous mode (figure 2b), the cluster has 2 product terms. note that if the product term cluster is routed to a different macrocell, the allocator con?uration is not determined by the mode of the macrocell actually being driven. the con?uration is always set by the mode of the macrocell that the cluster will drive if not routed away, regardless of the actual routing. in addition, there is an extra product term that can either join the basic cluster to give an extended cluster, or drive the second input of an exclusive-or gate in the signal path. if included with the basic cluster, this provides for up to 20 product terms on a synchronous function that uses four extended 5-product-term clusters. a similar asynchronous function can have up to 18 product terms. when the extra product term is used to extend the cluster, the value of the second xor input can be programmed as a 0 or a 1, giving polarity control. the possible con?urations of the logic allocator are shown in figures 3 and 4.
12 mach 4 family table 10. logic allocator for all mach 4 and mach 4a devices (except m4(lv)-32/32 and m4a(3,5)-32/32) output macrocell available clusters output macrocell available clusters m 0 c 0 , c 1 , c 2 m 8 c 7 , c 8 , c 9 , c 10 m 1 c 0 , c 1 , c 2 , c 3 m 9 c 8 , c 9 , c 10 , c 11 m 2 c 1 , c 2 , c 3 , c 4 m 10 c 9 , c 10 , c 11 , c 12 m 3 c 2 , c 3 , c 4 , c 5 m 11 c 10 , c 11 , c 12 , c 13 m 4 c 3 , c 4 , c 5 , c 6 m 12 c 11 , c 12 , c 13 , c 14 m 5 c 4 , c 5 , c 6 , c 7 m 13 c 12 , c 13 , c 14 , c 15 m 6 c 5 , c 6 , c 7 , c 8 m 14 c 13 , c 14 , c 15 m 7 c 6 , c 7 , c 8 , c 9 m 15 c 14 , c 15 table 11. logic allocator for m4(lv)-32/32 and m4a(3,5)-32/32 output macrocell available clusters output macrocell available clusters m 0 c 0 , c 1 , c 2 m 8 c 8 , c 9 , c 10 m 1 c 0 , c 1 , c 2 , c 3 m 9 c 8 , c 9 , c 10 , c 11 m 2 c 1 , c 2 , c 3 , c 4 m 10 c 9 , c 10 , c 11 , c 12 m 3 c 2 , c 3 , c 4 , c 5 m 11 c 10 , c 11 , c 12 , c 13 m 4 c 3 , c 4 , c 5 , c 6 m 12 c 11 , c 12 , c 13 , c 14 m 5 c 4 , c 5 , c 6 , c 7 m 13 c 12 , c 13 , c 14 , c 15 m 6 c 5 , c 6 , c 7 m 14 c 13 , c 14 , c 15 m 7 c 6 , c 7 m 15 c 14 , c 15 0 default 0 default prog. polarity to n-1 to n-2 from n-1 to n+1 from n+1 from n+2 basic product term cluster extra product term logic allocator n n to macrocell n 0 default 0 default prog. polarity to n-1 to n-2 from n-1 to n+1 from n+1 from n+2 basic product term cluster extra product term logic allocator nn to macrocell n 17466g-006 figure 2. logic allocator: con?uration of cluster ??set by mode of macrocell ? 17466g-005 a. synchronous mode b. asynchronous mode
mach 4 family 13 note that the con?uration of the logic allocator has absolutely no impact on the speed of the signal. all con?urations have the same delay. this means that designers do not have to decide between optimizing resources or speed; both can be optimized. if not used in the cluster, the extra product term can act in conjunction with the basic cluster to provide xor logic for such functions as data comparison, or it can work with the d-,t-type ?p- ?p to provide for j-k, and s-r register operation. in addition, if the basic cluster is routed to another macrocell, the extra product term is still available for logic. in this case, the ?st xor input will be a logic 0. this circuit has the ?xibility to route product terms elsewhere without giving up the use of the macrocell. product term clusters do not ?rap?around a pal block. this means that the macrocells at the ends of the block have fewer product terms available. 0 17466g-007 figure 3. logic allocator con?urations: synchronous mode a. basic cluster with xor b. extended cluster, active high c. extended cluster, active low d. basic cluster routed away; single-product-term, active high e. extended cluster routed away 0 17466g-008 figure 4. logic allocator con?urations: asynchronous mode b. extended cluster, active high c. extended cluster, active low e. extended cluster routed away d. basic cluster routed away; single-product-term, active high a. basic cluster with xor
14 mach 4 family macrocell the macrocell consists of a storage element, routing resources, a clock multiplexer, and initialization control. the macrocell has two fundamental modes: synchronous and asynchronous (figure 5). the mode chosen only affects clocking and initialization in the macrocell. in either mode, a combinatorial path can be used. for combinatorial logic, the synchronous mode will generally be used, since it provides more product terms in the allocator. swap d/t/l q ap ar power-up reset pal-block initialization product terms from logic allocator block clk0 block clk1 block clk2 block clk3 to output and input switch matrices common pal-block resource individual macrocell resources from pal-clock generator d/t/l q ap ar power-up reset individual initialization product term from logic allocator block clk0 block clk1 to output and input switch matrices individual clock product term from pal-block clock generator 17466g-010 figure 5. macrocell 17466g-009 a. synchronous mode b. asynchronous mode
mach 4 family 15 the ?p-?p can be con?ured as a d-type or t-type latch. j-k or s-r registers can be synthesized. the primary ?p-?p con?urations are shown in figure 6, although others are possible. flip-?p functionality is de?ed in table 12. note that a j-k latch is inadvisable as it will cause oscillation if both j and k inputs are high. dq ap ar dq ap ar lq ap ar lq ap ar g g tq ap ar 17466g-011 figure 6. primary macrocell con?urations g. combinatorial with programmable polarity a. d-type with xor b. d-type with programmable d polarity c. latch with xor d. latch with programmable d polarity e. t-type with programmable t polarity f. combinatorial with xor
16 mach 4 family note: 1. polarity of clk/le can be programmed although the macrocell shows only one input to the register, the xor gate in the logic allocator allows the d-, t-type register to emulate j-k, and s-r behavior. in this case, the available product terms are divided between j and k (or s and r). when con?ured as j-k, s-r, or t-type, the extra product term must be used on the xor gate input for ?p-?p emulation. in any register type, the polarity of the inputs can be programmed. the clock input to the ?p-?p can select any of the four pal block clocks in synchronous mode, with the additional choice of either polarity of an individual product term clock in the asynchronous mode. the initialization circuit depends on the mode. in synchronous mode (figure 7), asynchronous reset and preset are provided, each driven by a product term common to the entire pal block. table 12. register/latch operation con?uration input(s) clk/le 1 q+ d-type register d=x d=0 d=1 0,1, () () () q 0 1 t-type register t=x t=0 t=1 0, 1, () () () q q q d-type latch d=x d=0 d=1 1(0) 0(1) 0(1) q 0 1 power-up reset ap d/t/l ar q pal-block initialization product terms a. power-up reset power-up preset ap d/l pal-block initialization product terms ar q 17466g-012 17466g-013 figure 7. synchronous mode initialization con?urations b. power-up preset
mach 4 family 17 a reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing ?xibility. in asynchronous mode (figure 8), a single individual product term is provided for initialization. it can be selected to control reset or preset. note that the reset/preset swapping selection feature effects power-up reset as well. the initialization functionality of the ?p-?ps is illustrated in table 13. the macrocell sends its data to the output switch matrix and the input switch matrix. the output switch matrix can route this data to an output if so desired. the input switch matrix can send the signal back to the central switch matrix as feedback. note: 1. transparent latch is unaffected by ar, ap output switch matrix the output switch matrix allows macrocells to be connected to any of several i/o cells within a pal block. this provides high ?xibility in determining pinout and allows design changes to occur without effecting pinout. in mach 4 and mach 4a devices with 2:1 macrocell-i/o cell ratio, each pal block has twice as many macrocells as i/o cells. the mach 4 output switch matrix allows for half of the macrocells to drive i/o cells within a pal block, in combinations according to figure 9. each i/o cell can choose from eight macrocells; each macrocell has a choice of four i/o cells. the mach 4 and mach 4a devices with 1:1 macrocell-i/o cell ratio allow each macrocell to drive one of eight i/ o cells (figure 9). table 13. asynchronous reset/preset operation ar ap clk/le 1 q+ 0 0 x see table 12 01x1 10x0 11x0 power-up reset ap d/l/t ar q individual reset product term a. reset power-up preset ap d/l/t ar q individual preset product term b. preset 17466g-014 17466g-015 figure 8. asynchronous mode initialization con?urations
18 mach 4 family table 14. output switch matrix combinations for mach 4 and mach 4a devices with 2:1 macrocell-i/o cell ratio macrocell routable to i/o cells m0, m1 i/o0, i/o5, i/o6, i/o7 m2, m3 i/o0, i/o1, i/o6, i/o7 m4, m5 i/o0, i/o1, i/o2, i/o7 m6, m7 i/o0, i/o1, i/o2, i/o3 m8, m9 i/o1, i/o2, i/o3, i/o4 m10, m11 i/o2, i/o3, i/o4, i/o5 m12, m13 i/o3, i/o4, i/o5, i/o6 m14, m15 i/o4, i/o5, i/o6, i/o7 i/o cell available macrocells i/o0 m0, m1, m2, m3, m4, m5, m6, m7 i/o1 m2, m3, m4, m5, m6, m7, m8, m9 i/o2 m4, m5, m6, m7, m8, m9, m10, m11 i/o3 m6, m7, m8, m9, m10, m11, m12, m13 i/o4 m8, m9, m10, m11, m12, m13, m14, m15 i/o5 m0, m1, m10, m11, m12, m13, m14, m15 figure 9. mach 4 output switch matrix m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 i/o0 i/o1 i/o2 i/o3 i/o4 i/o5 i/o6 i/o7 each macrocell can drive one of 4 i/o cells in mach 4 and mach 4a devices with 2:1 macrocell-i/o cell ratio. each i/o cell can choose one of 8 macrocells in all mach 4 and mach 4a devices. macrocells mux i/o cell m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 i/o0 i/o1 i/o2 i/o3 i/o4 i/o5 i/o6 i/o7 i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 each macrocell can drive one of 8 i/o cells in mach 4a devices with 1:1 macrocell-i/o cell ratio except m4a(3, 5)-32/32 devices. m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 i/o0 i/o1 i/o2 i/o3 i/o4 i/o5 i/o6 i/o7 i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 each macrocell can drive one of 8 i/o cells in m4(lv)-32/32 and m4a(3, 5)-32/32 devices.
mach 4 family 19 i/o6 m0, m1, m2, m3, m12, m13, m14, m15 i/o7 m0, m1, m2, m3, m4, m5, m14, m15 table 15. output switch matrix combinations for mach 4 and mach 4a devices with 1:1 macrocell-i/o cell ratio except m4(lv)-32/32 and m4a(3,5)-32/32 macrocell routable to i/o cells m0 i/o0 i/o1 i/o2 i/o3 i/o4 i/o5 i/o6 i/o7 m1 i/o0 i/o1 i/o2 i/o3 i/o4 i/o5 i/o6 i/o7 m2 i/o0 i/o1 i/o2 i/o3 i/o4 i/o5 i/o6 i/o7 m3 i/o0 i/o1 i/o2 i/o3 i/o4 i/o5 i/o6 i/o7 m4 i/o0 i/o1 i/o2 i/o3 i/o4 i/o5 i/o6 i/o7 m5 i/o0 i/o1 i/o2 i/o3 i/o4 i/o5 i/o6 i/o7 m6 i/o0 i/o1 i/o2 i/o3 i/o4 i/o5 i/o6 i/o7 m7 i/o0 i/o1 i/o2 i/o3 i/o4 i/o5 i/o6 i/o7 m8 i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 m9 i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 m10 i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 m11 i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 m12 i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 m13 i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 m14 i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 m15 i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 i/o cell available macrocells i/o0 m0 m1 m2 m3 m4 m5 m6 m7 i/o1 m0 m1 m2 m3 m4 m5 m6 m7 i/o2 m0 m1 m2 m3 m4 m5 m6 m7 i/o3 m0 m1 m2 m3 m4 m5 m6 m7 i/o4 m0 m1 m2 m3 m4 m5 m6 m7 i/o5 m0 m1 m2 m3 m4 m5 m6 m7 i/o6 m0 m1 m2 m3 m4 m5 m6 m7 i/o7 m0 m1 m2 m3 m4 m5 m6 m7 i/o8 m8 m9 m10 m11 m12 m13 m14 m15 i/o9 m8 m9 m10 m11 m12 m13 m14 m15 i/o10 m8 m9 m10 m11 m12 m13 m14 m15 i/o11 m8 m9 m10 m11 m12 m13 m14 m15 i/o12 m8 m9 m10 m11 m12 m13 m14 m15 i/o13 m8 m9 m10 m11 m12 m13 m14 m15 i/o14 m8 m9 m10 m11 m12 m13 m14 m15 i/o15 m8 m9 m10 m11 m12 m13 m14 m15 table 14. output switch matrix combinations for mach 4 and mach 4a devices with 2:1 macrocell-i/o cell ratio macrocell routable to i/o cells
20 mach 4 family table 16. output switch matrix combinations for m4(lv)-32/32 and m4a(3,5)-32/32 macrocell routable to i/o cells m0, m1, m2, m3, m4, m5, m6, m7 i/o0, i/o1, i/o2, i/o3, i/o4, i/o5, i/o6, i/o7 m8, m9, m10, m11, m12, m13, m14, m15 i/o8, i/o9, i/o10, i/o11, i/o12, i/o13, i/o14, i/o15 i/o cell available macrocells i/o0, i/o1, i/o2, i/o3, i/o4, i/o5, i/o6, i/o7 m0, m1, m2, m3, m4, m5, m6, m7 i/o8, i/o9, i/o10, i/o11, i/o12, i/o13, i/o14, i/o15 m8, m9, m10, m11, m12, m13, m14, m15
mach 4 family 21 i/o cell the i/o cell (figures 10 and 11) simply consists of a programmable output enable, a feedback path, and ?p-?p (except mach 4 and mach 4a devices with 1:1 macrocell-i/o cell ratio.) an individual output enable product term is provided for each i/o cell. the feedback signal drives the input switch matrix. the i/o cell (figure 10) contains a ?p-?p, which provides the capability for storing the input in a d-type register or latch. the clock can be any of the pal block clocks. both the direct and registered versions of the input are sent to the input switch matrix. this allows for such functions as ?ime-domain-multiplexed?data comparison, where the ?st data value is stored, and then the second data value is put on the i/o pin and compared with the previous stored value. note that the ?p-?p used in the mach 4 i/o cell is independent of the ?p-?ps in the macrocells. it powers up to a logic low. zero-hold-time input register the mach 4 devices have a zero-hold-time (zht) fuse which controls the time delay associated with loading data into all i/o cell registers and latches. when programmed, the zht fuse increases the data path setup delays to input storage elements, matching equivalent delays in the clock path. when the fuse is erased, the setup time to the input storage element is minimized. this feature facilitates doing worst-case designs for which data is loaded from sources which have low (or zero) minimum output propagation delays from clock edges. input switch matrix the input switch matrix (figures 12 and 13) optimizes routing of inputs to the central switch matrix. without the input switch matrix, each input and feedback signal has only one way to enter the central switch matrix. the input switch matrix provides additional ways for these signals to enter the central switch matrix. d/l q block clk3 block clk2 block clk1 block clk0 to input switch matrix individual output enable product term from output switch matrix 17466g-017 17466g-018 figure 10. i/o cell for mach 4 and mach 4a devices with 2:1 macrocell-i/o cell ratio figure 11. i/o cell for mach 4 and mach 4a devices with 1:1 macrocell-i/o cell ratio to input switch matrix individual output enable product term from output switch matrix power-up reset
22 mach 4 family pal block clock generation each mach 4 device has four clock pins that can also be used as inputs. these pins drive a clock generator in each pal block (figure 14). the clock generator provides four clock signals that can be used anywhere in the pal block. these four pal block clock signals can consist of a large number of combinations of the true and complement edges of the global clock signals. table 17 lists the possible combinations. note: 1. m4(lv)-32/32, m4a(3,5)-32/32, m4(lv)-64/32 and m4a(3,5)-64/32 have only two clock pins, gclk0 and gclk1. gclk2 is tied to gclk0, and gclk3 is tied to gclk1. to central switch matrix from macrocell 2 from input cell direct from macrocell 1 registered/latched 17466g-002 17466g-003 figure 12. mach 4 and mach 4a with 2:1 macrocell-i/o cell ratio - input switch matrix figure 13. mach 4 and mach 4a with 1:1 macrocell-i/o cell ratio - input switch matrix to central switch matrix from macrocell from i/o pin gclk0 gclk1 gclk2 gclk3 block clk0 (gclk0 or gclk1) block clk1 (gclk1 or gclk0) block clk2 (gclk2 or gclk3) block clk3 (gclk3 or gclk2) 17466g-004 figure 14. pal block clock generator 1
mach 4 family 23 note: 1. values in parentheses are for the m4(lv)-32/32, m4a(3,5)-32/32, m4(lv)-64/32 and m4a(3,5)-64/32. this feature provides high ?xibility for partitioning state machines and dual-phase clocks. it also allows latches to be driven with either polarity of latch enable, and in a master-slave con?uration. table 17. pal block clock combinations 1 block clk0 block clk1 block clk2 block clk3 gclk0 gclk1 gclk0 gclk1 x x x x gclk1 gclk1 gclk0 gclk0 x x x x x x x x gclk2 (gclk0) gclk3 (gclk1 ) gclk2 (gclk0) gclk3 (gclk1 ) x x x x gclk3 (gclk1) gclk3 (gclk1) gclk2 (gclk0 ) gclk2 (gclk0 )
24 mach 4 family mach 4 timing model the primary focus of the mach 4 timing model is to accurately represent the timing in a mach 4 device, and at the same time, be easy to understand. this model accurately describes all combinatorial and registered paths through the device, making a distinction between internal feedback and external feedback . a signal uses internal feedback when it is fed back into the switch matrix or block without having to go through the output buffer. the input register speci?ations are also reported as internal feedback. when a signal is fed back into the switch matrix after having gone through the output buffer, it is using external feedback. the parameter, t buf , is de?ed as the time it takes to go from feedback through the output buffer to the i/o pad. if a signal goes to the internal feedback rather than to the i/o pad, the parameter designator is followed by an ?? by adding t buf to this internal parameter, the external parameter is derived. for example, t pd = t pdi + t buf . a diagram representing the modularized mach 4 timing model is shown in figure 15. refer to the technical note entitled mach 4 timing and high speed design for a more detailed discussion about the timing parameters. speedlocking for guaranteed fixed timing the mach 4 architecture allows allocation of up to 20 product terms to an individual macrocell with the assistance of an xor gate without incurring additional timing delays. the design of the switch matrix and pal blocks guarantee a ?ed pin-to-pin delay that is independent of the logic required by the design. other non-vantis cplds incur serious timing delays as product terms expand beyond their typical 4 or 5 product term limits. speed and speedlocking combine to give designs easy access to the performance required in today? designs. (external feedback) (internal feedback) input reg/ input latch t sirs t hirs t sil t hil t sirz t hirz t silz t hilz t pdili t icosi t igosi t pdilzi q t ss(t) t sa(t) t h(s/a) t s(s/a)l t h(s/a)l t srr t pdi t pdli t co(s/a)i t go(s/a)i t sri comb/dff/tff/ latch/sr*/jk* s/r in blk clk out t pl t buf t ea t er t slw q central switch matrix *emulated 17466g-025 figure 15. mach 4 timing model
mach 4 family 25 ieee 1149.1-compliant boundary scan testability all mach 4 devices, except the m4(lv)-128n/64, have boundary scan cells and are compliant to the ieee 1149.1 standard. this allows functional testing of the circuit board on which the device is mounted through a serial scan path that can access all critical logic nodes. internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test node data to be captured and shifted out for veri?ation. in addition, these devices can be linked into a board-level serial scan path for more complete board-level testing. ieee 1149.1-compliant in-system programming programming devices in-system provides a number of signi?ant bene?s including: rapid prototyping, lower inventory levels, higher quality, and the ability to make in-?ld modi?ations. all mach 4 devices provide in-system programming (isp) capability through their boundary scantest access ports. this capability has been implemented in a manner that ensures that the port remains compliant to the ieee 1149.1 standard. by using ieee 1149.1 as the communication interface through which isp is achieved, customers get the bene? of a standard, well-de?ed interface. mach 4 devices can be programmed across the commercial temperature and voltage range. vantis provides its free pc-based lattice/vantispro software to facilitate in-system programming. lattice/vantispro takes the jedec ?e output produced by vantis?design implementation software, along with information about the jtag chain, and creates a set of vectors that are used to drive the jtag chain. lattice/vantispro software can use these vectors to drive a jtag chain via the parallel port of a pc. alternatively, lattice/vantispro software can output ?es in formats understood by common automated test equipment. this equpment can then be used to program mach 4 devices during the testing of a circuit board. for more information about in-system programming, refer to the separate document entitled mach isp manual . pci compliant mach 4(a) devices in the -5/-55/-6/-65/-7/-10/-12 speed grades are compliant with the pci local bus speci?ation version 2.1, published by the pci special interest group (sig). the 5-v devices are fully pci-compliant. the 3.3-v devices are mostly compliant but do not meet the pci condition to clamp the inputs as they rise above v cc because of their 5-v input tolerant feature. safe for mixed supply voltage system designs both the 3.3-v and 5-v v cc mach 4 devices are safe for mixed supply voltage system designs. the 5-v devices will not overdrive 3.3-v devices above the output voltage of 3.3 v, while they accept inputs from other 3.3-v devices. the 3.3-v device will accept inputs up to 5.5 v. both the 5-v and 3.3-v versions have the same high-speed performance and provide easy-to-use mixed- voltage design capability. pull up or bus-friendly inputs and i/os all mach 4 devices have inputs and i/os which feature the bus-friendly circuitry incorporating two inverters in series which loop back to the input. this double inversion weakly holds the input at its last driven logic state. while it is good design practice to tie unused pins to a known state, the bus-friendly input structure pulls pins away from the input threshold voltage where noise can cause high-frequency switching. at power-up, the bus-friendly latches are reset to a
26 mach 4 family logic level ?.?for the circuit diagram, please refer to the input/output equivalent schematics (page 393) in the general information section of the vantis 1999 data book. all mach 4a devices have a programmable bit that con?ures all inputs and i/os with either pull-up or bus-friendly characteristics. if the device is con?ured in pull-up mode, all inputs and i/o pins are weakly pulled up. for the circuit diagram, please refer to the input/output equivalent schematics (page 393) in the general information section of the vantis 1999 data book. power management each individual pal block in mach 4 devices features a programmable low-power mode, which results in power savings of up to 50%. the signal speed paths in the low-power pal block will be slower than those in the non-low-power pal block. this feature allows speed critical paths to run at maximum frequency while the rest of the signal paths operate in the low-power mode. programmable slew rate each mach 4 device i/o has an individually programmable output slew rate control bit. each output can be individually con?ured for the higher speed transition (3 v/ns) or for the lower noise transition (1 v/ns). for high-speed designs with long, unterminated traces, the slow-slew rate will introduce fewer re?ctions, less noise, and keep ground bounce to a minimum. for designs with short traces or well terminated lines, the fast slew rate can be used to achieve the highest speed. the slew rate is adjusted independent of power. power-up reset/set all ?p-?ps power up to a known state for predictable system initialization. if a macrocell is con?ured to set on a signal from the control generator, then that macrocell will be set during device power-up. if a macrocell is con?ured to reset on a signal from the control generator or is not con?ured for set/reset, then that macrocell will reset on power-up. to guarantee initialization values, the v cc rise must be monotonic, and the clock must be inactive until the reset delay time has elapsed. security bit a programmable security bit is provided on the mach 4 devices as a deterrent to unauthorized copying of the array con?uration patterns. once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors. programming and veri?ation are also defeated by the security bit. the bit can only be reset by erasing the entire device. hot socketing mach 4a devices are well-suited for those applications that require hot socketing capability. hot socketing a device requires that the device, when powered down, can tolerate active signals on the i/os and inputs without being damaged. additionally, it requires that the effects of the powered-down mach devices be minimal on active signals.
mach 4 family 27 macrocell m0 c0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 b 89 m0 m4(lv)-64/32, m4a(3, 5)-64/32 m4(lv)-96/48, m4a(3, 5)-96/48 m4(lv)-128/64, m4a(3, 5)-128/64 a b 16 17 17 17 m4(lv)-192/96, m4(3, 5)-192/96 m4(lv)-256/128, m4(3, 5)-256/128 m4a3-384 m4a3-512 18 18 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 o0 o1 o2 o3 o4 o5 o6 o7 m15 clk0 clk1 clk2 clk3 i/o cell i/o0 clock generator macrocell macrocell macrocell macrocell macrocell macrocell central switch matrix macrocell macrocell macrocell macrocell macrocell macrocell macrocell macrocell macrocell 24 a 0 4 16 16 c1 c2 i/o cell i/o1 c3 c4 i/o cell i/o2 c5 c6 i/o cell i/o3 c7 c8 i/o cell i/o4 c9 c10 i/o cell i/o5 c11 c12 i/o cell i/o6 c13 c14 i/o cell input switch matrix i/o7 c15 logic allocator output switch matrix figure 16. pal block for mach 4 and mach 4a with 2:1 macrocell - i/o cell ratio 17466h-40
28 mach 4 family figure 17. pal block for mach 4a devices with 1:1 macrocell-i/o cell ratio (except m4a (3,5)-32/32) 17466h-41
mach 4 family 29 macrocell m0 c0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 17 97 m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 o0 o2 o4 o6 o8 o10 o12 o14 m15 i/o cell i/o0 clock generator macrocell macrocell macrocell macrocell macrocell macrocell central switch matrix macrocell macrocell macrocell macrocell macrocell macrocell macrocell macrocell macrocell o1 i/o cell i/o1 32 16 0 2 16 16 c1 c2 i/o cell i/o2 o3 i/o cell i/o3 o5 i/o cell i/o5 o7 i/o cell i/o7 c3 c4 i/o cell i/o4 c5 c6 i/o cell i/o6 c7 c8 i/o cell i/o8 o9 i/o cell i/o9 o11 i/o cell i/o11 c0 c0 i/o cell i/o10 c0 c0 i/o cell i/o12 o13 i/o cell i/o13 o15 i/o cell i/o15 c0 c0 i/o cell input switch matrix i/o14 c0 logic allocator output switch matrix output switch matrix clk0/i0 clk0/i1 figure 18. pal block for m4(lv)-32/32 and m4a (3,5)-32/32 17466h-042
30 mach 4 family block diagram ?m4(lv)-32/32 and m4a(3,5)-32/32 central switch matrix 2 2 clk0/i0, clk1/i1 i/o8?/o15 i/o0?/o7 i/o16?/o23 i/o24?/o31 i/o cells output switch matrix macrocells 8 8 16 8 8 8 33 4 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 98 and logic array and logic allocator clock generator input switch matrix 8 8 16 8 8 8 2 8 8 i/o cells output switch matrix macrocells 8 8 16 8 8 8 8 8 i/o cells output switch matrix macrocells 66 x 98 and logic array and logic allocator 8 8 16 8 8 8 2 8 8 input switch matrix input switch matrix input switch matrix clock generator oe oe oe oe block a block b 33 17466h-019
mach 4 family 31 block diagram ?m4(lv)-64/32 and m4a(3,5)-64/32 central switch matrix 2 2 clk0/i0, clk1/i1 i/o0 i/o7 i/o24 i/o31 i/o16 i/o23 i/o8 i/o15 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator clock generator 16 16 24 16 16 8 33 4 4 2 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator clock generator input switch matrix 16 16 24 16 16 8 33 4 4 2 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator 16 16 24 16 16 8 33 4 4 2 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator 16 16 24 16 16 8 33 4 4 2 8 8 input switch matrix input switch matrix input switch matrix clock generator clock generator oe oe oe oe block a block b block d block c 17466h-020
mach 4 family 32 block diagram ?m4(lv)-96/48 and m4a(3,5)-96/48 4 4 4 clk0/i0, clk1/i1, clk2/i4, clk3/i5 i2, i3, i6, i7 i/o16?/o23 i/o8?/o15 i/o0?/o7 i/o40?/o47 i/o32?/o39 i/o24?/o31 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator clock generator 16 16 24 16 16 8 33 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator clock generator input switch matrix 16 16 24 16 16 8 33 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator clock generator input switch matrix 16 16 24 16 16 8 33 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator 16 16 24 16 16 8 33 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator 16 16 24 16 16 8 33 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator 16 16 24 16 16 8 33 4 4 4 8 8 oe input switch matrix input switch matrix input switch matrix clock generator clock generator clock generator input switch matrix oe oe oe oe oe bl oc k cbl oc k bbl oc k a block d block e block f central switch matrix 17466g-021
33 mach 4 family central switch matrix 4 4 2 clk0/i0, clk1/i1, clk2/i3, clk3/i4 i2, i5 i/o0 e i/o7 i/o8 e i/o15 i/o16 e i/o23 i/o24 e i/031 i/o32 e i/o39 i/o40 e i/o47 i/o48 e i/o55 i/o56 e i/o63 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator clock generator 16 16 24 16 16 8 33 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator clock generator input switch matrix 16 16 24 16 16 8 33 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator clock generator input switch matrix 16 16 24 16 16 8 33 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator clock generator input switch matrix 16 16 24 16 16 8 33 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator 16 16 24 16 16 8 33 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator 16 16 24 16 16 8 33 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator 16 16 24 16 16 8 33 4 4 4 8 8 i/o cells output switch matrix macrocells 66 x 90 and logic array and logic allocator oe 16 16 24 16 16 8 33 4 4 4 8 8 input switch matrix input switch matrix input switch matrix clock generator clock generator clock generator input switch matrix input switch matrix clock generator oe oe oe oe oe oe oe block a block b block c block d block h block g block f block e block diagram ?m4(lv)-128n/64, m4(lv)-128/64 and m4a(3,5)-128/64 17466h-022
mach 4 family 34 block diagram ?m4(lv)-192/96 and m4a(3,5)-192/96 central switch matrix block b i/o8 e i/o15 clk0 e clk3 i/o32 e i/o39 block e i/o56 e i/o63 block h i/o48 e i/o55 block g i0 e i15 i/o40 e i/o47 block f block a i/o0 e i/o7 block k i/o80 e i/o87 block l i/o88 e i/o95 block c i/o16 e i/o23 block d i/o24 e i/o31 i/o72 e i/o79 block j i/o64 e i/o71 block i i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix 16 4 4 oe 8 16 8 4 16 24 8 16 16 34 4 4 8 24 34 4 8 8 16 16 4 4 16 16 oe 8 24 34 4 8 8 16 16 4 4 16 16 oe 8 16 8 4 16 24 8 16 16 34 34 34 34 34 34 34 34 34 4 4 oe oe 8 16 8 4 16 24 8 16 16 4 4 8 24 4 8 8 16 16 4 4 16 16 oe 8 24 4 8 8 16 16 4 4 16 16 oe oe 4 4 8 24 16 16 8 16 8 4 16 oe 4 4 24 16 16 8 16 16 4 8 8 oe 4 4 24 16 16 8 16 16 4 8 8 4 4 8 24 16 16 8 16 8 4 16 oe 8 16 8 4 16 24 8 16 16 4 4 oe 17466g-064
35 mach 4 family block diagram ?m4(lv)-256/128 and m4a(3,5)-256/128 central switch matrix block b i/o8 e i/o15 clk0 e clk3 i/o48 e i/o55 block g i/o72 e i/o79 block j i/o64 e i/o71 block i i0 e i13 i/o56 e i/o63 block h block a i/o0 e i/o7 block o i/o112 e i/o119 block p i/o120 e i/o127 block c i/o16 e i/o23 block d i/o24 e i/o31 block e i/o32 e i/o39 block f i/o40 e i/o47 i/o104 e i/o111 block n i/o96 e i/o103 block m i/o88 e i/o95 block l i/o80 e i/o87 block k i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 68 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix 14 4 4 oe 8 16 8 4 16 24 8 16 16 34 4 4 8 24 34 4 8 8 16 16 4 4 16 16 oe 8 24 34 4 8 8 16 16 4 4 16 16 oe oe 4 4 8 34 24 16 16 8 16 8 4 16 oe 4 4 34 24 16 16 8 16 16 4 8 8 oe 4 4 34 24 16 16 8 16 16 4 8 8 4 4 8 34 24 16 16 8 16 8 4 16 oe 8 16 8 4 16 24 8 16 16 34 4 4 oe oe 8 16 8 4 16 24 8 16 16 34 4 4 8 24 34 4 8 8 16 16 4 4 16 16 oe 8 24 34 4 8 8 16 16 4 4 16 16 oe oe 4 4 8 34 24 16 16 8 16 8 4 16 oe 4 4 34 24 16 16 8 16 16 4 8 8 oe 4 4 34 24 16 16 8 16 16 4 8 8 4 4 8 34 24 16 16 8 16 8 4 16 oe 8 16 8 4 16 24 8 16 16 34 4 4 oe 17466g-024
mach 4 family 36 block diagram ?m4a3-384/192 central switch matrix block b i/o8 e i/o15 clk0 e clk3 block a i/o0 e i/o7 block gx i/o176 e i/o183 block hx i/o184 e i/o191 block c i/o16 e i/o23 block f i/o40 e i/o47 block d i/o24 e i/o31 block e i/o32 e i/o39 i/o168 e i/o175 block fx i/o144 e i/o151 block cx i/o160 e i/o167 block ex i/o152 e i/o159 block dx i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix 4 4 4 oe 8 16 8 4 16 24 8 16 16 36 4 4 8 24 36 4 8 8 16 16 4 4 16 16 oe 8 24 36 4 8 8 16 16 4 4 16 16 oe oe 4 4 8 36 24 16 16 8 16 8 4 16 oe 4 4 36 24 16 16 8 16 16 4 8 8 oe 4 4 36 24 16 16 8 16 16 4 8 8 4 4 8 36 24 16 16 8 16 8 4 16 oe 8 16 8 4 16 24 8 16 16 36 4 4 oe i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix oe 8 16 8 4 16 24 8 16 16 36 4 4 8 24 36 4 8 8 16 16 4 4 16 16 oe 8 24 36 4 8 8 16 16 4 4 16 16 oe oe 4 4 8 36 24 16 16 8 16 8 4 16 oe 4 4 36 24 16 16 8 16 16 4 8 8 oe 4 4 36 24 16 16 8 16 16 4 8 8 4 4 8 36 24 16 16 8 16 8 4 16 oe 8 16 8 4 16 24 8 16 16 36 4 4 oe block g i/o48 e i/o55 block j i/o72 e i/o79 block h i/o56 e i/o63 block i i/o64 e i/o71 i/o136 e i/o143 block bx i/o112 e i/o119 block o i/o128 e i/o135 block ax i/o120 e i/o127 block p detail a repeat detail a i/o88 e i/o95 block l i/o80 e i/o87 block k i/o196 e i/o103 block m i/o104 e i/o111 block n 17466g-067
37 mach 4 family block diagram - m4a3-512/256 central switch matrix block b i/o8 e i/o15 clk0 e clk3 block a i/o0 e i/o7 block ox i/o240 e i/o247 block px i/o248 e i/o255 block c i/o16 e i/o23 block f i/o40 e i/o47 block d i/o24 e i/o31 block e i/o32 e i/o39 i/o232 e i/o239 block nx i/o208 e i/o215 block kx i/o224 e i/o231 block mx i/o216 e i/o223 block lx i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix oe 8 16 8 4 16 24 8 16 16 36 4 4 8 24 36 4 8 8 16 16 4 4 16 16 oe 8 24 36 4 8 8 16 16 4 4 16 16 oe oe 4 4 8 36 24 16 16 8 16 8 4 16 oe 4 4 36 24 16 16 8 16 16 4 8 8 oe 4 4 36 24 16 16 8 16 16 4 8 8 4 4 8 36 24 16 16 8 16 8 4 16 oe 8 16 8 4 16 24 8 16 16 36 4 4 oe i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix i/o cells macrocells 72 x 90 and logic array and logic allocator clock generator input switch matrix output switch matrix oe 8 16 8 4 16 24 8 16 16 36 4 4 8 24 36 4 8 8 16 16 4 4 16 16 oe 8 24 36 4 8 8 16 16 4 4 16 16 oe oe 4 4 8 36 24 16 16 8 16 8 4 16 oe 4 4 36 24 16 16 8 16 16 4 8 8 oe 4 4 36 24 16 16 8 16 16 4 8 8 4 4 8 36 24 16 16 8 16 8 4 16 oe 8 16 8 4 16 24 8 16 16 36 4 4 oe block g i/o48 e i/o55 block j i/o72 e i/o79 block h i/o56 e i/o63 block i i/o64 e i/o71 i/o200 e i/o207 block jx i/o176 e i/o183 block gx i/o192 e i/o199 block ix i/o184 e i/o191 block hx block k i/o80 e i/o87 block n i/o104 e i/o111 block l i/o88 e i/o95 block m i/o96 e i/o103 i/o168 e i/o175 block fx i/o144 e i/o151 block cx i/o160 e i/o167 block ex i/o152 e i/o159 block dx detail a repeat detail a repeat detail a i/o120 e i/o127 block p i/o112 e i/o119 block o i/o128 e i/o135 block ax i/o136 e i/o143 block bx 4 4 4 17466g-068
mach 4 family 38 absolute maximum ratings m4 and m4a5 storage temperature . . . . . . . . . . . . . .-65 c to +150 c ambient temperature with power applied . . . . . . . . . . . . . . -55 c to +100 c device junction temperature . . . . . . . . . . . . . +130 c supply voltage with respect to ground . . . . . . . . . . . -0.5 v to +7.0 v dc input voltage . . . . . . . . . . . . -0.5 v to v cc + 0.5 v static discharge voltage . . . . . . . . . . . . . . . . . 2000 v latchup current (t a = -40 c to +85 c). . . . . . . 200 ma stresses above those listed under absolute maximum ratings may cause permanent device failure. functionality at or above these limits is not implied. exposure to absolute maximum ratings for extended periods may affect device reliability. operating ranges commercial (c) devices ambient temperature (t a ) operating in free air . . . . . . . . . . . . . . . 0 c to +70 c supply voltage (v cc ) with respect to ground . . . . . . . . . +4.75 v to +5.25 v industrial (i) devices ambient temperature (t a ) operating in free air . . . . . . . . . . . . . . -40 c to +85 c supply voltage (v cc ) with respect to ground . . . . . . . . . . +4.50 v to +5.5 v operating ranges de?e those limits between which the func- tionality of the device is guaranteed. notes: 1. total i ol for one pal block should not exceed 64 ma. 2. these are absolute values with respect to device ground, and all overshoots due to system or tester noise are included. 3. i/o pin leakage is the worst case of i il and i ozl (or i ih and i ozh ). 4. not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. v out = 0.5 v has been chosen to avoid test problems caused by tester ground degradation. 5-v dc characteristics over operating ranges parameter symbol parameter description test conditions min typ max unit v oh output high voltage i oh = ?.2 ma, v cc = min, v in = v ih or v il 2.4 v i oh = 0 ma, v cc = max, v in = v ih or v il 3.3 v v ol output low voltage i ol = 24 ma, v cc = min, v in = v ih or v il (note 1) 0.5 v v ih input high voltage guaranteed input logical high voltage for all inputs (note 2) 2.0 v v il input low voltage guaranteed input logical low voltage for all inputs (note 2) 0.8 v i ih input high leakage current v in = 5.25 v, v cc = max (note 3) 10 a i il input low leakage current v in = 0 v, v cc = max (note 3) ?0 a i ozh off-state output leakage current high v out = 5.25 v, v cc = max, v in = v ih or v il (note 3) 10 a i ozl off-state output leakage current low v out = 0 v, v cc = max , v in = v ih or v il (note 3) ?0 a i sc output short-circuit current v out = 0.5 v, v cc = max (note 4) ?0 ?60 ma
39 mach 4 family absolute maximum ratings m4lv and m4a3 storage temperature . . . . . . . . . . . . . .-65 c to +150 c ambient temperature with power applied . . . . . . . . . . . . . . -55 c to +100 c device junction temperature . . . . . . . . . . . . . +130 c supply voltage with respect to ground . . . . . . . . . . . -0.5 v to +4.5 v dc input voltage . . . . . . . . . . . . . . . . . -0.5 v to 6.0 v static discharge voltage . . . . . . . . . . . . . . . . . 2000 v latchup current (t a = -40 c to +85 c). . . . . . . 200 ma stresses above those listed under absolute maximum ratings may cause permanent device failure. functionality at or above these limits is not implied. exposure to absolute maximum ratings for extended periods may affect device reliability. operating ranges commercial (c) devices ambient temperature (t a ) operating in free air . . . . . . . . . . . . . . . 0 c to +70 c supply voltage (v cc ) with respect to ground . . . . . . . . . . . +3.0 v to +3.6 v industrial (i) devices ambient temperature (t a ) operating in free air . . . . . . . . . . . . . . -40 c to +85 c supply voltage (v cc ) with respect to ground . . . . . . . . . . . +3.0 v to +3.6 v operating ranges de?e those limits between which the func- tionality of the device is guaranteed. notes: 1. total i ol for one pal block should not exceed 64 ma. 2. i/o pin leakage is the worst case of i il and i ozl (or i ih and i ozh ). 3. not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. 3.3-v dc characteristics over operating ranges parameter symbol parameter description test conditions min typ max unit v oh output high voltage v cc = min v in = v ih or v il i oh = ?00 av cc ?0.2 v i oh = ?.2 ma 2.4 v v ol output low voltage v cc = min v in = v ih or v il (note 1) i ol = 100 a 0.2 v i ol = 24 ma 0.5 v v ih input high voltage guaranteed input logical high voltage for all inputs 2.0 5.5 v v il input low voltage guaranteed input logical low voltage for all inputs ?.3 0.8 v i ih input high leakage current v in = 3.6 v, v cc = max (note 2) 5 a i il input low leakage current v in = 0 v, v cc = max (note 2) ? a i ozh off-state output leakage current high v out = 3.6 v, v cc = max v in = v ih or v il (note 2) 5 a i ozl off-state output leakage current low v out = 0 v, v cc = max v in = v ih or v il (note 2) ? a i sc output short-circuit current v out = 0.5 v, v cc = max (note 3) ?5 ?60 ma
mach 4 family 40 mach 4 timing parameters over operating ranges 1 -7 -10 -12 -14 -15 -18 unit min max min max min max min max min max min max combinatorial delay: t pdi internal combinatorial propagation delay 5.5 8.0 10.0 12.0 13.0 16.0 ns t pd combinatorial propagation delay 7.5 10.0 12.0 14.0 15.0 18.0 ns registered delays: t ss synchronous clock setup time, d-type register 5.5 6.0 7.0 10.0 10.0 12.0 ns t sst synchronous clock setup time, t-type register 6.5 7.0 8.0 11.0 11.0 13.0 ns t sa asynchronous clock setup time, d-type register 3.5 4.0 5.0 8.0 8.0 10.0 ns t sat asynchronous clock setup time, t-type register 4.5 5.0 6.0 9.0 9.0 11.0 ns t hs synchronous clock hold time 0.0 0.0 0.0 0.0 0.0 0.0 ns t ha asynchronous clock hold time 3.5 4.0 5.0 8.0 8.0 10.0 ns t cosi synchronous clock to internal output 3.5 4.5 6.0 8.0 8.0 10.0 ns t cos synchronous clock to output 5.5 6.5 8.0 10.0 10.0 12.0 ns t coai asynchronous clock to internal output 7.5 10.0 12.0 16.0 16.0 18.0 ns t coa asynchronous clock to output 9.5 12.0 14.0 18.0 18.0 20.0 ns latched delays: t ssl synchronous latch setup time 6.0 7.0 8.0 10.0 10.0 12.0 ns t sal asynchronous latch setup time 4.0 4.0 5.0 8.0 8.0 10.0 ns t hsl synchronous latch hold time 0.0 0.0 0.0 0.0 0.0 0.0 ns t hal asynchronous latch hold time 4.0 4.0 5.0 8.0 8.0 10.0 ns t pdli transparent latch to internal output 8.0 10.0 12.0 15.0 15.0 18.0 ns t pdl propagation delay through transparent latch to output 10.0 12.0 14.0 17.0 17.0 20.0 ns t gosi synchronous gate to internal output 4.0 5.5 8.0 9.0 9.0 10.0 ns t gos synchronous gate to output 6.0 7.5 10.0 11.0 11.0 12.0 ns t goai asynchronous gate to internal output 9.0 11.0 14.0 17.0 17.0 20.0 ns t goa asynchronous gate to output 11.0 13.0 16.0 19.0 19.0 22.0 ns input register delays: t sirs input register setup time 2.0 2.0 2.0 2.0 2.0 2.0 ns t hirs input register hold time 3.0 3.0 3.0 4.0 4.0 4.0 ns t icosi input register clock to internal feedback 3.5 4.5 6.0 6.0 6.0 6.0 ns input latch delays: t sil input latch setup time 2.0 2.0 2.0 2.0 2.0 2.0 ns t hil input latch hold time 3.0 3.0 3.0 4.0 4.0 4.0 ns t igosi input latch gate to internal feedback 4.0 4.0 4.0 5.0 5.0 6.0 ns t pdili transparent input latch to internal feedback 2.0 2.0 2.0 2.0 2.0 2.0 ns input register delays with zht option: t sirz input register setup time - zht 6.0 6.0 6.0 6.0 6.0 6.0 ns t hirz input register hold time - zht 0.0 0.0 0.0 0.0 0.0 0.0 ns
41 mach 4 family input latch delays with zht option: t silz input latch setup time - zht 6.0 6.0 6.0 6.0 6.0 6.0 ns t hilz input latch hold time - zht 0.0 0.0 0.0 0.0 0.0 0.0 ns t pdilzi transparent input latch to internal feedback - zht 6.0 6.0 6.0 6.0 6.0 6.0 ns output delays: t buf output buffer delay 2.0 2.0 2.0 2.0 2.0 2.0 ns t slw slow slew rate delay adder 2.5 2.5 2.5 2.5 2.5 2.5 ns t ea output enable time 9.5 10.0 12.0 15.0 15.0 17.0 ns t er output disable time 9.5 10.0 12.0 15.0 15.0 17.0 ns power delay: t pl power-down mode delay adder 2.5 2.5 2.5 2.5 2.5 2.5 ns reset and preset delays: t sri asynchronous reset or preset to internal register output 10.0 12.0 14.0 18.0 18.0 20.0 ns t sr asynchronous reset or preset to register output 12.0 14.0 16.0 20.0 20.0 22.0 ns t srr asynchronous reset and preset register recovery time 8.0 8.0 10.0 15.0 15.0 17.0 ns t srw asynchronous reset or preset width 10.0 10.0 12.0 15.0 15.0 17.0 ns clock/le width: t wls global clock width low 3.0 5.0 6.0 6.0 6.0 7.0 ns t whs global clock width high 3.0 5.0 6.0 6.0 6.0 7.0 ns t wla product term clock width low 4.0 5.0 8.0 9.0 9.0 10.0 ns t wha product term clock width high 4.0 5.0 8.0 9.0 9.0 10.0 ns t gws global gate width low (for low transparent) or high (for high transparent) 5.0 5.0 6.0 6.0 6.0 7.0 ns t gwa product term gate width low (for low transparent) or high (for high transparent) 4.0 5.0 6.0 9.0 9.0 11.0 ns t wirl input register clock width low 4.5 5.0 6.0 6.0 6.0 7.0 ns t wirh input register clock width high 4.5 5.0 6.0 6.0 6.0 7.0 ns t wil input latch gate width 5.0 5.0 6.0 6.0 6.0 7.0 ns mach 4 timing parameters over operating ranges 1 (continued) -7 -10 -12 -14 -15 -18 unit min max min max min max min max min max min max
mach 4 family 42 notes: 1. see ?witching test circuit?in the general information section of the vantis 1999 data book. 2. this parameter does not apply to ?p-?ps in the emulated mode since the feedback path is required for emulation. frequency: f maxs external feedback, d-type, min of 1/(t wls + t whs ) or 1/(t ss + t cos ) 90.9 80.0 66.7 50.0 50.0 41.7 mhz external feedback, t-type, min of 1/(t wls + t whs ) or 1/(t sst + t cos ) 83.3 74.1 62.5 47.6 47.6 40.0 mhz internal feedback (f cnt ), d-type, min of 1/(t wls + t whs ) or 1/(t ss + t cosi ) 111.1 95.2 76.9 55.6 55.6 45.5 mhz internal feedback (f cnt ), t-type, min of 1/(t wls + t whs ) or 1/(t sst + t cosi ) 100.0 87.0 71.4 52.6 52.6 43.5 mhz no feedback 2 , min of 1/(t wls + t whs ), 1/(t ss + t hs ) or 1/(t sst + t hs ) 153.8 100.0 83.3 83.3 83.3 71.4 mhz f maxa external feedback, d-type, min of 1/(t wla + t wha ) or 1/(t sa + t coa ) 76.9 62.5 52.6 38.5 38.5 33.3 mhz external feedback, t-type, min of 1/(t wla + t wha ) or 1/(t sat + t coa ) 71.4 58.8 50.0 37.0 37.0 32.3 mhz internal feedback (f cnta ), d-type, min of 1/(t wla + t wha ) or 1/(t sa + t coai ) 90.9 71.4 58.8 41.7 41.7 35.7 mhz internal feedback (f cnta ), t-type, min of 1/(t wla + t wha ) or 1/(t sat + t coai ) 83.3 66.7 55.6 40.0 40.0 34.5 mhz no feedback 2 , min of 1/(t wla + t wha ), 1/(t sa + t ha ) or 1/(t sat + t ha ) 125.0 100.0 62.5 55.6 55.6 50.0 mhz f maxi maximum input register frequency, min of 1/(t wirh + t wirl ) or 1/(t sirs + t hirs ) 111.0 100.0 83.3 83.3 83.3 71.4 mhz mach 4 timing parameters over operating ranges 1 (continued) -7 -10 -12 -14 -15 -18 unit min max min max min max min max min max min max mach 4a timing parameters over operating ranges 1 -5 -55 -6 -65 -7 -10 -12 -14 unit min max min max min max min max min max min max min max min max combinatorial delay: t pdi internal combinatorial propagation delay 3.5 4.0 4.0 4.5 5.0 7.0 9.0 11.0 ns t pd combinatorial propagation delay 5.0 5.5 6.0 6.5 7.5 10.0 12.0 14.0 ns registered delays: t ss synchronous clock setup time, d-type register 3.0 3.5 4.0 4.0 5.5 6.0 7.0 10.0 ns t sst synchronous clock setup time, t-type register 4.0 4.0 4.5 4.5 6.5 7.0 8.0 11.0 ns t sa asynchronous clock setup time, d-type register 2.5 2.5 3.0 3.0 3.5 4.0 5.0 8.0 ns t sat asynchronous clock setup time, t-type register 3.0 3.0 3.5 3.5 4.5 5.0 6.0 9.0 ns t hs synchronous clock hold time 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns
mach 4 family 43 t ha asynchronous clock hold time 2.5 2.5 3.0 3.0 3.5 4.0 5.0 8.0 ns t cosi synchronous clock to internal output 2.5 2.5 2.5 2.5 2.5 2.5 3.5 3.5 ns t cos synchronous clock to output 4.0 4.0 4.5 4.5 5.0 5.5 6.5 6.5 ns t coai asynchronous clock to internal output 5.0 5.0 5.0 5.0 6.0 8.0 10.0 12.0 ns t coa asynchronous clock to output 6.5 6.5 7.0 7.0 8.5 11.0 13.0 15.0 ns latched delays: t ssl synchronous latch setup time 4.0 4.0 4.5 4.5 6.0 7.0 8.0 10.0 ns t sal asynchronous latch setup time 3.0 3.0 3.5 3.5 4.0 4.0 5.0 8.0 ns t hsl synchronous latch hold time 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns t hal asynchronous latch hold time 3.0 3.0 3.5 3.5 4.0 4.0 5.0 8.0 ns t pdli transparent latch to internal output 5.5 5.5 6.0 6.0 7.5 9.0 11.0 12.0 ns t pdl propagation delay through transparent latch to output 7.0 7.0 8.0 8.0 10.0 12.0 14.0 15.0 ns t gosi synchronous gate to internal output 3.0 3.0 3.0 3.0 3.5 4.5 7.0 8.0 ns t gos synchronous gate to output 4.5 4.5 5.0 5.0 6.0 7.5 10.0 11.0 ns t goai asynchronous gate to internal output 6.0 6.0 6.0 6.0 8.5 10.0 13.0 15.0 ns t goa asynchronous gate to output 7.5 7.5 8.0 8.0 11.0 13.0 16.0 18.0 ns input register delays: t sirs input register setup time 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 ns t hirs input register hold time 2.5 2.5 3.0 3.0 3.0 3.0 3.0 4.0 ns t icosi input register clock to internal feedback 3.0 3.0 3.0 3.0 3.5 4.5 6.0 6.0 ns input latch delays: t sil input latch setup time 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 ns t hil input latch hold time 2.5 2.5 3.0 3.0 3.0 3.0 3.0 4.0 ns t igosi input latch gate to internal feedback 3.5 3.5 4.0 4.0 4.0 4.0 4.0 5.0 ns t pdili transparent input latch to internal feedback 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.0 ns mach 4a timing parameters over operating ranges 1 (continued) -5 -55 -6 -65 -7 -10 -12 -14 unit min max min max min max min max min max min max min max min max
44 mach 4 family input register delays with zht option: t sirz input register setup time - zht 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 ns t hirz input register hold time - zht 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns input latch delays with zht option: t silz input latch setup time - zht 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 ns t hilz input latch hold time - zht 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ns t pdilzi transparent input latch to internal feedback - zht 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 ns output delays: t buf output buffer delay 1.5 1.5 2.0 2.0 2.5 3.0 3.0 3.0 ns t slw slow slew rate delay adder 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 ns t ea output enable time 7.5 7.5 8.5 8.5 9.5 10.0 12.0 15.0 ns t er output disable time 7.5 7.5 8.5 8.5 9.5 10.0 12.0 15.0 ns power delay: t pl power-down mode delay adder 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 ns reset and preset delays: t sri asynchronous reset or preset to internal register output 7.5 7.7 8.0 8.0 9.5 11.0 13.0 16.0 ns t sr asynchronous reset or preset to register output 9.0 9.2 10.0 10.0 12.0 14.0 16.0 19.0 ns t srr asynchronous reset and preset register recovery time 7.0 7.0 7.5 7.5 8.0 8.0 10.0 15.0 ns t srw asynchronous reset or preset width 7.0 7.0 8.0 8.0 10.0 10.0 12.0 15.0 ns clock/le width: t wls global clock width low 2.0 2.0 2.5 2.5 3.0 5.0 6.0 6.0 ns t whs global clock width high 2.0 2.0 2.5 2.5 3.0 5.0 6.0 6.0 ns t wla product term clock width low 3.0 3.0 3.5 3.5 4.0 5.0 8.0 9.0 ns t wha product term clock width high 3.0 3.0 3.5 3.5 4.0 5.0 8.0 9.0 ns t gws global gate width low (for low transparent) or high (for high transparent) 4.0 4.0 4.5 4.5 5.0 5.0 6.0 6.0 ns t gwa product term gate width low (for low transparent) or high (for high transparent) 4.0 4.0 4.5 4.5 5.0 5.0 6.0 9.0 ns t wirl input register clock width low 3.0 3.0 3.5 3.5 4.0 5.0 6.0 6.0 ns mach 4a timing parameters over operating ranges 1 (continued) -5 -55 -6 -65 -7 -10 -12 -14 unit min max min max min max min max min max min max min max min max
mach 4 family 45 notes: 1. see ?witching test circuit?in the general information section of the vantis 1999 data book. 2. this parameter does not apply to ?p-?ps in the emulated mode since the feedback path is required for emulation. t wirh input register clock width high 3.0 3.0 3.5 3.5 4.0 5.0 6.0 6.0 ns t wil input latch gate width 4.0 4.0 4.5 4.5 5.0 5.0 6.0 6.0 ns frequency: f maxs external feedback, d-type, min of 1/(t wls + t whs ) or 1/(t ss + t cos ) 143 133 118 118 95.2 87.0 74.1 60.6 mhz external feedback, t-type, min of 1/(t wls + t whs ) or 1/(t sst + t cos ) 125 125 111 111 87.0 80.0 69.0 57.1 mhz internal feedback (f cnt ), d-type, min of 1/(t wls + t whs ) or 1/(t ss + t cosi ) 182 167 154 154 125 100 83.3 74.1 mhz internal feedback (f cnt ), t-type, min of 1/(t wls + t whs ) or 1/(t sst + t cosi ) 154 154 143 143 111 105 87.0 69.0 mhz no feedback 2 , min of 1/ (t wls + t whs ), 1/(t ss + t hs ) or 1/(t sst + t hs ) 250 250 200 200 154 125 100 83.3 mhz f maxa external feedback, d-type, min of 1/(t wla + t wha ) or 1/(t sa + t coa ) 111 111 100 100 83.3 66.7 55.6 43.5 mhz external feedback, t-type, min of 1/(t wla + t wha ) or 1/(t sat + t coa ) 105 105 95.2 95.2 76.9 62.5 52.6 41.7 mhz internal feedback (f cnta ), d-type, min of 1/(t wla + t wha ) or 1/(t sa + t coai ) 133 133 125 125 105 83.3 66.7 50.0 mhz internal feedback (f cnta ), t-type, min of 1/(t wla + t wha ) or 1/(t sat + t coai ) 125 125 118 118 95.2 76.9 62.5 47.6 mhz no feedback 2 , min of 1/ (t wla + t wha ), 1/(t sa + t ha ) or 1/(t sat + t ha ) 167 167 143 143 125 100 62.5 55.6 mhz f maxi maximum input register frequency, min of 1/(t wirh + t wirl ) or 1/(t sirs + t hirs ) 167 167 143 143 125 100 83.3 83.3 mhz mach 4a timing parameters over operating ranges 1 (continued) -5 -55 -6 -65 -7 -10 -12 -14 unit min max min max min max min max min max min max min max min max
46 mach 4 family capacitance 1 note: 1. these parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modi?d where this parameter may be affected. i cc vs. frequency these curves represent the typical power consumption for a particular device at system frequency. the selected ?ypical?pattern is a 16-bit up-down counter. this pattern ?ls the device and exercises every macrocell. maximum frequency shown uses internal feedback and a d-type register. power/speed are optimized to obtain the highest counter frequency and the lowest power. the highest frequency (lsbs) is placed in common pal blocks, which are set to high power. the lowest frequency signals (msbs) are placed in a common pal block and set to lowest power. parameter symbol parameter description test conditions typ unit c in input capacitance v in =2.0 v 3.3 v or 5 v, 25?, 1 mhz 6 pf c i/o output capacitance v out =2.0v 3.3 v or 5 v, 25?, 1 mhz 8 pf 350 300 250 200 150 100 50 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 v cc = 5 v or 3.3 v, t a = 25 ? i cc (ma) frequency (mhz) 17466g-066 m4(lv)-32/32 m4(lv)-64/32 m4(lv)-96/48 m4(lv)-128/64 m4(lv)-192/96 m4(lv)-256/128 figure 19. i cc curves at high power mode 17466g-044
mach 4 family 47 350 300 250 200 150 100 50 0 0 10 20 30 40 50 60 70 80 90 100 110 120 v cc = 5 v or 3.3 v, t a = 25 ? m4(lv)-32/32 i cc (ma) frequency (mhz) 17466g-065 m4(lv)-64/32 m4(lv)-96/48 m4(lv)-128/64 m4(lv)-192/96 m4(lv)-256/128 figure 20. i cc curves at low power mode figure 21. mach 4a device dynamic icc curves at high and low power modes 300 250 200 150 100 50 0 0 20 40 60 80 100 120 140 160 180 200 m4a3-256/128 (hp) m4a3-256/128 (lp) m4a3-128/64 (hp) m4a3-128/64 (lp) m4a3-32/32 (hp) m4a3-32/32 (lp) 220 240 260 frequency (mhz) v cc = 3.3v, t a = 25 c icc (ma) hp: high power lp: low power 17466h-066
48 mach 4 family 44-pin plcc connection diagram (m4(lv)-32/32, m4a(3,5)-32/32, m4(lv)-64/32 and m4a(3,5)-64/32) top view 44-pin plcc pin designations clk/i = clock or input gnd = ground i/o = input/output v cc = supply voltage tdi = test data in tck = test clock tms = test mode select tdo = test data out 1 44 43 42 5 4 3 2 641 40 7 8 9 10 11 12 13 14 15 16 17 23 24 25 26 19 20 21 22 18 27 28 39 38 37 36 35 34 33 32 31 30 29 i/o5 i/o6 i/o7 tdi clk0/i0 gnd tck i/o8 i/o9 i/o10 i/o11 a2 a1 a0 b0 b1 b2 b3 d3 d2 d1 d0 c0 c1 c2 b3 b2 b1 b0 b8 b9 b10 a2 a1 a0 a8 a9 a10 a11 i/o27 i/o26 i/o25 i/o24 tdo gnd clk1/i1 tms i/o23 i/o22 i/o21 i/o12 i/o13 i/o14 i/o15 vcc gnd i/o16 i/o17 i/o18 i/o19 i/o20 b4 b5 b6 b7 c7 c6 c5 c4 c3 a12 a13 a14 a15 b15 b14 b13 b12 b11 i/o4 i/o3 i/o2 i/o1 i/o0 gnd vcc i/o31 i/o30 i/o29 i/o28 a3 a4 a5 a6 a7 d7 d6 d5 d4 a3 a4 a5 a6 a7 b7 b6 b5 b4 m4(lv)-32/32 m4a(3,5)-32/32 m4(lv)-32/32 m4a(3,5)-32/32 m4(lv)-64/32 m4a(3,5)-64/32 m4(lv)-64/32 m4a(3,5)-64/32 m4(lv)-64/32 m4a(3,5)-64/32 m4(lv)-64/32 m4a(3,5)-64/32 17466g-026 i/o cell (0-7) pal block (a-d) c7
mach 4 family 49 44-pin tqfp connection diagram (m4(lv)-32/32, m4a(3,5)-32/32, m4(lv)-64/32 and m4a(3,5)-64/32) top view 44-pin tqfp pin designations clk/i = clock or input gnd = ground i/o = input/output v cc = supply voltage tdi = test data in tck = test clock tms = test mode select tdo = test data out i/o12 i/o13 i/o14 i/o15 vcc gnd i/o16 i/o17 i/o18 i/o19 i/o20 b4 b5 b6 b7 c7 c6 c5 c4 c3 a12 a13 a14 a15 b15 b14 b13 b12 b11 i/o4 i/o3 i/o2 i/o1 i/o0 gnd vcc i/o31 i/o30 i/o29 i/o28 a3 a4 a5 a6 a7 d7 d6 d5 d4 a3 a4 a5 a6 a7 b7 b6 b5 b4 i/o27 i/o26 i/o25 i/o24 tdo gnd clk1/i1 tms i/o23 i/o22 i/o21 d3 d2 d1 d0 c0 c1 c2 b3 b2 b1 b0 b8 b9 b10 i/o5 i/o6 i/o7 tdi clk0/i0 gnd tck i/o8 i/o9 i/o10 i/o11 a2 a1 a0 b0 b1 b2 b3 a2 a1 a0 a8 a9 a10 a11 1 2 3 4 5 6 7 8 9 10 11 33 32 31 30 29 28 27 26 25 24 23 44 43 42 41 40 39 38 37 36 35 34 12 13 14 15 16 17 18 19 20 21 22 m4(lv)-32/32 m4a(3,5)-32/32 m4(lv)-32/32 m4a(3,5)-32/32 m4(lv)-64/32 m4a(3,5)-64/32 m4(lv)-64/32 m4a(3,5)-64/32 m4(lv)-64/32 m4a(3,5)-64/32 m4(lv)-64/32 m4a(3,5)-64/32 i/o cell (0-7) pal block (a-d) c7
50 mach 4 family 48-pin tqfp connection diagram (m4(lv)-32/32, m4a(3,5)-32/32, m4(lv)-64/32 and m4a(3,5)-64/32) top view 48-pin tqfp pin designations clk/i = clock or input gnd = ground i/o = input/output v cc = supply voltage nc = no connect tdi = test data in tck = test clock tms = test mode select tdo = test data out i/o12 i/o13 i/o14 i/o15 vcc nc gnd i/o16 i/o17 i/o18 i/o19 i/o20 b4 b5 b6 b7 c7 c6 c5 c4 c3 a12 a13 a14 a15 b15 b14 b13 b12 b11 i/o4 i/o3 i/o2 i/o1 i/o0 gnd nc vcc i/o31 i/o30 i/o29 i/o28 a3 a4 a5 a6 a7 d7 d6 d5 d4 a3 a4 a5 a6 a7 b7 b6 b5 b4 i/o27 i/o26 i/o25 i/o24 tdo gnd nc clk1/i1 tms i/o23 i/o22 i/o21 d3 d2 d1 d0 c0 c1 c2 b3 b2 b1 b0 b8 b9 b10 i/o5 i/o6 i/o7 tdi clk0/i0 nc gnd tck i/o8 i/o9 i/o10 i/o11 a2 a1 a0 b0 b1 b2 b3 a2 a1 a0 a8 a9 a10 a11 1 2 3 4 5 6 7 8 9 10 11 12 33 34 35 36 32 31 30 29 28 27 26 25 44 45 46 47 48 43 42 41 40 39 38 37 13 14 15 16 17 18 19 20 21 22 23 24 m4(lv)-32/32 m4a(3,5)-32/32 m4(lv)-32/32 m4a(3,5)-32/32 m4(lv)-64/32 m4a(3,5)-64/32 m4(lv)-64/32 m4a(3,5)-64/32 m4(lv)-64/32 m4a(3,5)-64/32 m4(lv)-64/32 m4a(3,5)-64/32 17466g-028 i/o cell (0-7) pal block (a-d) c7
mach 4 family 51 100-pin tqfp connection diagram (m4(lv)-96/48 and m4a(3,5)-96/48) top view 100-pin tqfp pin designations clk/i = clock or input gnd = ground i = input i/o = input/output v cc = supply voltage nc = no connect tdi = test data in tck = test clock tms = test mode select tdo = test data out 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 nc tdi nc nc i/o6 i/o7 i/o8 i/o9 i/o10 i/o11 i0/clk0 v cc gnd i1/clk1 i/o12 i/o13 i/o14 i/o15 i/o16 i/o17 nc nc tms tck nc a1 a0 b0 b1 b2 b3 b4 b5 b6 b7 c0 c1 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 gnd nc nc i/o18 i/o19 i/o20 i/o21 i/o22 i/o23 nc i2 nc nc gnd v cc i3 i/o24 i/o25 i/o26 i/o27 i/o28 i/o29 nc nc gnd c2 c3 c4 c5 c6 c7 d7 d6 d5 d4 d3 d2 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 gnd nc nc i/o5 i/o4 i/o3 i/o2 i/o1 i/o0 i7 v cc gnd nc nc i6 nc i/o47 i/o46 i/o45 i/o44 i/o43 i/o42 nc nc gnd a2 a3 a4 a5 a6 a7 f7 f6 f5 f4 f3 f2 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 nc tdo nc nc nc i/o41 i/o40 i/o39 i/o38 i/o37 i/o36 i5/clk3 gnd v cc i4/clk2 i/o35 i/o34 i/o33 i/o32 i/o31 i/o30 nc nc nc nc f1 f0 e0 e1 e2 e3 e4 e5 e6 e7 d0 d1 17466g-029 i/o cell (0-7) pal block (a-f) c7
52 mach 4 family 84-pin plcc connection diagram (m4(lv)-128n/64) top view 84-pin plcc note: pin-compatible with the mach131, mach231, mach435. pin designations clk/i = clock or input gnd = ground i = input i/o = input/output v cc = supply voltage 1 2 3 81 82 83 84 6 7 8 9 4 5 80 76 77 78 79 75 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 31 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 43 42 41 40 47 46 45 44 37 36 35 34 39 38 33 48 52 51 50 49 10 22 11 32 53 74 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 clk 0 /i 0 v cc gnd clk 1 /i 1 i/o16 i/o17 i/o18 i/o19 i/o20 i/o21 i/o22 i/o23 gnd i/o8 gnd i/o55 i/o54 i/o53 i/o52 i/o51 i/o50 i/o49 i/o48 clk 3 /i 4 v cc clk 2 /i 3 i/o47 g7 g6 g5 g4 g3 g2 g1 g0 f0 f1 f2 f3 f4 f5 f6 f7 b7 b6 b5 b4 b3 b2 b1 b0 c0 c1 c2 c3 c4 c5 c6 c7 i/o46 i/o45 i/o44 i/o43 i/o42 i/o41 gnd i/o40 gnd v cc i/o0 i/o62 i/o63 i 5 v cc i/o3 i/o4 i/o5 i/o6 i/o1 i/o2 i/o61 i/o57 i/o58 i/o59 i/o60 i/o56 i/o7 h0 h1 h2 h3 h4 h5 h6 h7 a7 a6 a5 a4 a3 a2 a1 a0 gnd gnd v cc i 2 i/o34 i/o33 i/o32 v cc i/o29 i/o28 i/o27 i/o26 i/o31 i/o30 i/o35 i/o39 i/o38 i/o37 i/o36 gnd i/o25 i/o24 e0 e1 e2 e3 e4 e5 e6 e7 d7 d6 d5 d4 d3 d2 d1 d0 17466g-030 i/o cell (0-7) pal block (a-h) c7
mach 4 family 53 100-pin pqfp connection diagram (m4(lv)-128/64 and m4a(3,5)-128/64) top view 100-pin pqfp note: the numbers in parentheses re?ct compatible pin numbers for 84-pin plcc. pin designations i/clk = input or clock gnd = ground i = input i/o = input/output v cc = supply voltage tdi = test data in tck = test clock tms = test mode select tdo = test data out trst = test reset enable = program i/o7 a7 a6 a5 a4 a3 a2 a1 a0 d7 d6 d5 d4 d3 d2 d1 d0 i/o6 i/o5 i/o4 i/o3 i/o2 i/o1 i/o0 v cc gnd gnd v cc i/o63 i/o62 i/o61 i/o60 i/o59 i/o58 i/o57 i/o56 h0 h1 h2 h3 h4 h5 h6 h7 gnd gnd tdi i5 i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 io/clk0 gnd gnd i1/clk1 i/o16 i/o17 i/o18 i/o19 i/o20 i/o21 i/o22 i/o23 b7 b6 b5 b4 b3 b2 b1 b0 c0 c1 c2 c3 c4 c5 c6 c7 tms tck gnd gnd 28 29 30 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 1 2 3 99 98 100 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 97 96 95 94 93 92 91 90 89 88 87 86 85 84 82 81 83 i/o46 i/o45 i/o44 i/o43 i/o42 i/o41 i/o40 i2 enable gnd gnd gnd td0 trst i/o55 i/o54 i/o53 i/o52 i/o51 i/o50 i/o49 i/o48 g7 g6 g5 g4 g3 g2 g1 g0 i4/clk3 gnd gnd i3/clk2 i/o47 f1 f2 f3 f4 f5 f6 f7 f0 gnd 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 80 79 78 i/o24 i/o25 i/o26 i/o27 i/o28 i/o29 i/o30 i/o31 gnd gnd i/o32 i/o33 i/o34 i/o35 i/o36 i/o37 i/o38 i/o39 e0 e1 e2 e3 e4 e5 e6 e7 (83) (12) (13) (14) (15) (16) (17) (18) (19) (20) (23) (24) (25) (26) (27) (28) (29) (30) (31) (33) (34) (35) (36) (37) (38) (39) (40) (45) (46) (47) (48) (49) (50) (51) (52) (62) (61) (60) (59) (58) (57) (56) (55) (54) (41) (73) (72) (71) (70) (69) (68) (67) (66) (65) (10) (9) (8) (7) (6) (5) (4) (3) (82) (81) (80) (79) (78) (77) (76) (75) v cc v cc v cc v cc v cc v cc 17466g - 031 i/o cell (0-7) pal block (a-h) c7
54 mach 4 family 100-pin tqfp connection diagram (m4(lv)-128/64 and m4a(3,5)-128/64) top view 100-pin tqfp pin designations clk/i = clock or input gnd = ground i = input i/o = input/output v cc = supply voltage tdi = test data in tck = test clock tms = test mode select tdo = test data out trst = test reset enable = program 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 gnd tdi i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 i0/clk0 v cc gnd i1/clk1 i/o16 i/o17 i/o18 i/o19 i/o20 i/o21 i/o22 i/o23 tms tck gnd b7 b6 b5 b4 b3 b2 b1 b0 c0 c1 c2 c3 c4 c5 c6 c7 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 gnd gnd i/o24 i/o25 i/o26 i/o27 i/o28 i/o29 i/o30 i/o31 i2 v cc gnd gnd v cc i/o32 i/o33 i/o34 i/o35 i/o36 i/o37 i/o38 i/o39 gnd gnd d7 d6 d5 d4 d3 d2 d1 d0 e0 e1 e2 e3 e4 e5 e6 e7 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 gnd gnd i/o7 i/o6 i/o5 i/o4 i/o3 i/o2 i/o1 i/o0 v cc gnd gnd v cc i5 i/o63 i/o62 i/o61 i/o60 i/o59 i/o58 i/o57 i/o56 gnd gnd a7 a6 a5 a4 a3 a2 a1 a0 h0 h1 h2 h3 h4 h5 h6 h7 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 gnd tdo trst i/o55 i/o54 i/o53 i/o52 i/o51 i/o50 i/o49 i/o48 i4/clk3 gnd v cc i3/clk2 i/o47 i/o46 i/o45 i/o44 i/o43 i/o42 i/o41 i/o40 enable gnd g7 g6 g5 g4 g3 g2 g1 g0 f0 f1 f2 f3 f4 f5 f6 f7 17466g-032 i/o cell (0-7) pal block (a-h) c7
mach 4 family 55 144-pin tqfp connection diagram (m4(lv)-192/96 and m4a(3,5)-192/96) top view 144-pin tqfp pin designations clk = clock gnd = ground i = input i/o = input/output v cc = supply voltage tdi = test data in tck = test clock tms = test mode select tdo = test data out 17466g-033 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 gnd tdi i/o0 i/o1 i/o2 i/o3 i/o4 i/o5 i/o6 i/o7 i2 i3 v cc gnd i4 i/o8 i/o9 i/o10 i/o11 i/o12 i/o13 i/o14 i/o15 gnd v cc i/o16 i/o17 i/o18 i/o19 i/o20 i/o21 i/o22 i/o23 tms tck gnd d7 d6 d5 d4 d3 d2 d1 d0 c7 c6 c5 c4 c3 c2 c1 c0 e7 e6 e5 e4 e3 e2 e1 e0 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 gnd i/o24 i/o25 i/o26 i/o27 i/o28 i/o29 i/o30 i/o31 i5 i6 i7 clk1 gnd v cc clk2 i8 i9 i/o32 i/o33 i/o34 i/o35 i/o36 i/o37 i/o38 i/o39 v cc gnd i/o40 i/o41 i/o42 i/o43 i/o44 i/o45 i/o46 i/o47 f7 f6 f5 f4 f3 f2 f1 f0 g0 g1 g2 g3 g4 g5 g6 g7 h0 h1 h2 h3 h4 h5 h6 h7 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 i/o95 i/o94 i/o93 i/o92 i/o91 i/o90 i/o89 i/o88 gnd v cc i/o87 i/o86 i/o85 i/o84 i/o83 i/o82 i/o81 i/o80 i1 i0 clk0 gnd v cc clk3 i15 i14 i13 i/o79 i/o78 i/o77 i/o76 i/o75 i/o74 i/o73 i/o72 gnd b7 b6 b5 b4 b3 b2 b1 b0 a7 a6 a5 a4 a3 a2 a1 a0 l0 l1 l2 l3 l4 l5 l6 l7 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 gnd tdo nc i/o71 i/o70 i/o69 i/o68 i/o67 i/o66 i/o65 i/o64 i12 v cc gnd i11 i10 i/o63 i/o62 i/o61 i/o60 i/o59 i/o58 i/o57 i/o56 gnd v cc i/o55 i/o54 i/o53 i/o52 i/o51 i/o50 i/o49 i/o48 nc gnd k0 k1 k2 k3 k4 k5 k6 k7 j0 j1 j2 j3 j4 j5 j6 j7 i0 i1 i2 i3 i4 i5 i6 i7 i/o cell (0-7) pal block (a-l) c7
56 mach 4 family 176-pin tqfp connection diagram - m4a3-256/128, m4a3-192/128, m4a3-128/128, and m4a3-384/132 top view 176-pin tqfp c7 c6 c5 c4 c3 c2 c1 c0 f7 f6 f5 f4 f3 f2 f1 f0 h5 g0 g1 g2 g3 g4 g5 g6 g7 j0 j1 j2 j3 j4 j5 j6 j7 c7 c6 c5 c4 c3 c2 c1 c0 d7 d6 d5 d4 d3 d2 d1 d0 e0 e1 e2 e3 e4 e5 e6 e7 f0 f1 f2 f3 f4 f5 f6 f7 gnd tdi i/o16 i/o17 i/o18 i/o19 i/o20 i/o21 i/o22 i/o23 vcc gnd i/o24 i/o25 i/o26 i/o27 i/o28 i/o29 i/o30 i/o31 gnd vcc i/o32 i/o33 i/o34 i/o35 i/o36 i/o37 i/o38 i/o39 i/o40 gnd vcc i/o41 i/o42 i/o43 i/o44 i/o45 i/o46 i/o47 i/o48 tms tck gnd gnd i/o49 i/o50 i/o51 i/o52 i/o53 i/o54 i/o55 i/o56 gnd vcc i/o57 i/o58 i/o59 i/o60 i/o61 i/o62 i/o63 i/o64 i/o66 clk1 gnd gnd vcc clk2 i/o66 i/o67 i/o68 i/o69 i/o70 i/o71 i/o72 i/o73 vcc gnd i/o74 i/o75 i/o76 i/o77 i/o78 i/o79 i/o80 i/o81 gnd gnd tdi i/o16 i/o17 i/o18 i/o19 i/o20 i/o21 i/o22 i/o23 vcc gnd i/o24 i/o25 i/o26 i/o27 i/o28 i/o29 i/o30 i/o31 gnd vcc i0*(i4) i/o32 i/o33 i/o34 i/o35 i/o36 i/o37 i/o38 i/o39 gnd vcc i/o40 i/o41 i/o42 i/o43 i/o44 i/o45 i/o46 i/o47 tms tck gnd gnd tdi i/o i/o i/o i/o i/o i/o i/o i/o vcc gnd i/o i/o i/o i/o i/o i/o i/o i/o gnd vcc i i/o i/o i/o i/o i/o i/o i/o i/o gnd vcc i/o i/o i/o i/o i/o i/o i/o i/o tms tck gnd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 k7 k6 k5 k4 k3 k2 k1 k0 i7 i6 i5 i4 i3 i2 i1 i0 l6 p0 p1 p2 p3 p4 p5 p6 p7 n0 n1 n2 n3 n4 n5 n6 n7 g7 g6 g5 g4 g3 g2 g1 g0 h7 h6 h5 h4 h3 h2 h1 h0 i0 i1 i2 i3 i4 i5 i6 i7 j0 j1 j2 j3 j4 j5 j6 j7 gnd i/o48 i/o49 i/o50 i/o51 i/o52 i/o53 i/o54 i/o55 gnd vcc i/o56 i/o57 i/o58 i/o59 i/o60 i/o61 i/o62 i/o63 i1*(i6) clk1 gnd gnd vcc clk2 i/o64 i/o65 i/o66 i/o67 i/o68 i/o69 i/o70 i/o71 vcc gnd i/o72 i/o73 i/o74 i/o75 i/o76 i/o77 i/o78 i/o79 gnd gnd i/o i/o i/o i/o i/o i/o i/o i/o gnd vcc i/o i/o i/o i/o i/o i/o i/o i/o i clk1 gnd gnd vcc clk2 i/o i/o i/o i/o i/o i/o i/o i/o vcc gnd i/o i/o i/o i/o i/o i/o i/o i/o gnd 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 fx7 fx6 fx5 fx4 fx3 fx2 fx1 fx0 cx7 cx6 cx5 cx4 cx3 cx2 cx1 cx0 dx5 bx0 bx1 bx2 bx3 bx4 bx5 bx6 bx7 o0 o1 o2 o3 o4 o5 o6 o7 n7 n6 n5 n4 n3 n2 n1 n0 m7 m6 m5 m4 m3 m2 m1 m0 l0 l1 l2 l3 l4 l5 l6 l7 k0 k1 k2 k3 k4 k5 k6 k7 b7 b6 b5 b4 b3 b2 b1 b0 a7 a6 a5 a4 a3 a2 a1 a0 p0 p1 p2 p3 p4 p5 p6 p7 o0 o1 o2 o3 o4 o5 o6 o7 b7 b6 b5 b4 b3 b2 b1 b0 d7 d6 d5 d4 d3 d2 d1 d0 hx6 ex0 ex1 ex2 ex3 ex4 ex5 ex6 ex7 gx0 gx1 gx2 gx3 gx4 gx5 gx6 gx7 gnd tdo trst i/o111 i/o110 i/o109 i/o108 i/o107 i/o106 i/o105 i/o104 vcc gnd i/o103 i/o102 i/o101 i/o100 i/o99 i/o98 i/o97 i/o96 i2*(i1) vcc gnd i/o95 i/o94 i/o93 i/o92 i/o91 i/o90 i/o89 i/o88 gnd vcc i/o87 i/o86 i/o85 i/o84 i/o83 i/o82 i/o81 i/o80 enable gnd gnd tdo vcc i/o i/o i/o i/o i/o i/o i/o i/o vcc gnd i/o i/o i/o i/o i/o i/o i/o i/o i vcc gnd i/o i/o i/o i/o i/o i/o i/o i/o gnd vcc i/o i/o i/o i/o i/o i/o i/o i/o gnd gnd gnd i/o15 i/o14 i/o13 i/o12 i/o11 i/o10 i/o9 i/o8 gnd vcc i/o7 i/o6 i/o5 i/o4 i/o3 i/o2 i/o1 i/o0 clk0 vcc gnd gnd clk3 i3*(i3) i/o127 i/o126 i/o125 i/o124 i/o123 i/o122 i/o121 i/o120 vcc gnd i/o119 i/o118 i/o117 i/o116 i/o115 i/o114 i/o113 i/o112 gnd gnd i/o i/o i/o i/o i/o i/o i/o i/o gnd vcc i/o i/o i/o i/o i/o i/o i/o i/o clk0 vcc gnd gnd clk3 i i/o i/o i/o i/o i/o i/o i/o i/o vcc gnd i/o i/o i/o i/o i/o i/o i/o i/o gnd gnd i/o15 i/o14 i/o13 i/o12 i/o11 i/o10 i/o9 i/o8 gnd vcc i/o7 i/o6 i/o5 i/o4 i/o3 i/o2 i/o1 i/o0 clk0 vcc gnd gnd clk3 i/o131 i/o130 i/o129 i/o128 i/o127 i/o126 i/o125 i/o124 i/o123 vcc gnd i/o122 i/o121 i/o120 i/o119 i/o118 i/o117 i/o116 i/o115 gnd gnd tdo vcc i/o114 i/o113 i/o112 i/o111 i/o110 i/o109 i/o108 i/o107 vcc gnd i/o106 i/o105 i/o104 i/o103 i/o102 i/o101 i/o100 i/o99 i/o98 vcc gnd i/o97 i/o96 i/o95 i/o94 i/o93 i/o92 i/o91 i/o90 gnd vcc i/o89 i/o88 i/o87 i/o86 i/o85 i/o84 i/o83 i/o82 gnd gnd 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 recommend to tie to vcc m4a3-256/128 m4a3-384/132 m4a3-128/128 & m4a3-192/128 recommend to tie to gnd pin designations clk gnd i i/o n/c vcc tdi tck tms tdo trst enable = = = = = = = = = = = = i/o cell (0-7) pal block (a-hx) clock ground input ( ) shows equivalent pin in m4a3-256/128 (208pqfp) input/output no connect supply voltage test data in test clock test mode select test data out test reset program c7 17466g-042
mach 4 family 57 208-pin pqfp connection diagram - m4a3-256/128, m4a5-256/128, m4-256/128, m4lv-256/128, and m4a3-384/160 top view 208-pin pqfp pin designations clk gnd i i/o n/c vcc tdi tck tms tdo trst enable = = = = = = = = = = = = i/o cell (0-7) pal block (a-hx) clock ground input ( ) shows equivalent pin in m4a3-256/128 (208pqfp) input/output no connect supply voltage test data in test clock test mode select test data out test reset program c7 17466g-044
58 mach 4 family 256-ball bga connection diagram (m4(lv)-256/128 and m4a(3,5)-256/128) bottom view 256-ball bga pin designations clk gnd i i/o n/c vcc tdi tck tms tdo trst enable = = = = = = = = = = = = i/o cell (0-7) pal block (a-p) clock ground input input/output no connect supply voltage test data in test clock test mode select test data out test reset program c7 17466g-045
mach 4 family 59 256-ball bga connection diagram - m4a3-384/192 bottom view 256-ball bga pin designations clk gnd i i/o n/c vcc tdi tck tms tdo = = = = = = = = = = i/o cell (0-7) pal block (a-hx) clock ground input input/output no connect supply voltage test data in test clock test mode select test data out c7 17466g-046
60 mach 4 family mach 4 product ordering information mach 4 devices commercial & industrial - 3.3v and 5v lattice/vantis programmable logic products are available with several ordering options. the order number (valid combination) is formed by a combination of: all mach devices are dual-marked with both commercial and industrial grades. the industrial speed grade is slower, i.e., m4-256/128-7yc-10yi valid combinations valid combinations list con?urations planned to be supported in volume for this device. consult the local lattice/vantis sales of?e to con?m availability of speci? valid combinations and to check on newly released combinations. 128 family type m 4- = mach 4 family (5-v v cc ) m 4lv- = mach 4 family low voltage (3.3-v v cc ) m4- 256 y c macrocell density 32 = 32 macrocells 128n = 128 macrocells, non-isp 64 = 64 macrocells 192 = 192 macrocells 96 = 96 macrocells 256 = 256 macrocells 128 = 128 macrocells i/os /32 = 32 i/os in 44-pin plcc, 44-pin tqfp or 48-pin tqfp /48 = 48 i/os in 100-pin tqfp /64 = 64 i/os in 84-pin plcc, 100-pin pqfp or 100-pin tqfp /96 = 96 i/os in 144-pin tqfp / 128 = 128 i/os in 208-pin pqfp or 256-ball bga operating conditions c = commercial (0 c to +70 c) i = industrial (-40 ? to +85 ?) package type a = ball grid array (bga) j = plastic leaded chip carrier (plcc) v = thin quad flat pack (tqfp) y = plastic quad flat pack (pqfp) speed -7 = 7.5 ns t pd -10 = 10 ns t pd -12 = 12 ns t pd -14 = 14 ns t pd -15 = 15 ns t pd -18 = 18 ns t pd -7 48 = 48-pin tqfp for m4(lv)-32/32 or m4(lv)-64/32 / valid combinations m4-32/32 -7, -10, -12, -15 jc, vc, vc48 m4lv-32/32 jc, vc, vc48 m4-64/32 jc, vc, vc48 m4lv-64/32 jc, vc, vc48 m4-96/48 vc m4lv-96/48 vc m4-128/64 yc, vc m4lv-128/64 yc, vc m4-128n/64 jc m4lv-128n/64 jc m4-192/96 vc m4lv-192/96 vc m4-256/128 yc, ac m4lv-256/128 yc, ac valid combinations m4-32/32 -10, -12, -14, -18 ji, vi, vi48 m4lv-32/32 ji, vi, vi48 m4-64/32 ji, vi, vi48 m4lv-64/32 ji, vi, vi48 m4-96/48 vi m4lv-96/48 vi m4-128/64 yi, vi m4lv-128/64 yi, vi m4-128n/64 ji m4lv-128n/64 ji m4-192/96 vi m4lv-192/96 vi m4-256/128 yi, ai m4lv-256/128 yi, ai
mach 4 family 61 mach 4a product ordering information mach 4a devices commercial and industrial - 3.3v and 5v lattice/vantis programmable logic products are available with several ordering options. the order number (valid combination) is formed by a combination of: 128 family type m 4a3- = mach 4 family low voltage advanced feature (3.3-v v cc ) m 4a5- = mach 4 family advanced feature (5-v v cc ) m4a3- 256 y c macrocell density 32 = 32 macrocells 192 = 192 macrocells 64 = 64 macrocells 256 = 256 macrocells 96 = 96 macrocells 384 = 384 macrocells 128 = 128 macrocells 512 = 512 macrocells i/os /32 = 32 i/os in 44-pin plcc, 44-pin tqfp or 48-pin tqfp /48 = 48 i/os in 100-pin tqfp /64 = 64 i/os in 100-pin tqfp, 100-pin pqfp, or 100-ball fpbga /68 = 68 i/os in 100-pin tqfp or 100-ball fpbga /96 = 96 i/os in 144-pin tqfp or 144-ball fpbga /128 = 128 i/os in 176-pin tqfp, 200-ball fpbga, 208-pin pqfp, or 256-ball bga /132 = 132 i/os in 176-pin tqfp /160 = 160 i/os in 208-pin pqfp /192 = 192 i/os in 256-ball bga or 320-ball fpbga /256 = 256 i/os in 352-ball bga operating conditions c = commercial (0 c to +70 c) i = industrial (-40 ? to +85 ?) package type a = ball grid array (bga) j = plastic leaded chip carrier (plcc) v = thin quad flat pack (tqfp) y = plastic quad flat pack (pqfp) fa = fine-pitch ball grid array 0.8mm (fpbga) speed -5 = 5.0 ns t pd -55 = 5.5 ns t pd -6 = 6.0 ns t pd -65 = 6.5 ns t pd -7 = 7.5 ns t pd -10 = 10 ns t pd -12 = 12 ns t pd -14 = 14 ns t pd -7 48 = 48-pin tqfp for m4a3-32/32 or m4a3-64/32 m4a5-32/32 or m4a5-64/32 / 3.3v commercial combinations m4a3-32/32 -5, -55, -6, -65, -7, -10, -12 jc, vc, vc48 m4a3-64/32 jc, vc, vc48 m4a3-64/64 vc, fac m4a3-96/48 vc m4a3-128/64 yc, vc, fac m4a3-128/96 vc, fac m4a3-128/128 vc, fac m4a3-192/68 vc, fac m4a3-192/96 vc, fac m4a3-192/128 vc, fac m4a3-256/128 yc, vc, ac, fac m4a3-256/160 yc m4a3-256/192 ac m4a3-384/132 -65, -7, -10, -12 vc m4a3-384/160 yc m4a3-384/192 ac m4a3-512/132 vc m4a3-512/160 yc m4a3-512/192 ac m4a3-512/256 ac 3.3v industrial combinations m4a3-32/32 -7, -10, -12, -14 ji, vi, vi48 m4a3-64/32 ji, vi, vi48 m4a3-64/64 vi m4a3-96/48 vi m4a3-128/64 yi, vi m4a3-128/96 vi m4a3-128/128 vi m4a3-192/68 vi m4a3-192/96 vi m4a3-192/128 vi m4a3-256/128 yi, vi, ai m4a3-256/160 yi m4a3-256/192 ai m4a3-384/132 -10, -12, -14 vi m4a3-384/160 yi m4a3-384/192 ai m4a3-512/132 vi m4a3-512/160 yi m4a3-512/192 ai m4a3-512/256 ai
62 mach 4 family most mach devices are dual-marked with both commercial and industrial grades. the industrial speed grade is slower, i.e., m4a3- 256/128-7yc-10yi valid combinations valid combinations list con?urations planned to be supported in volume for this device. consult the local lattice/vantis sales of?e to con?m availability of speci? valid combinations and to check on newly released combinations. trademarks copyright ? 1999 lattice semiconductor. all rights reserved. vantis, the vantis logo, and combinations thereof, first-time-fit, speedlocking, bus-friendly, designdirect, and lattice/vantis pro are trademarks, and machpro, machxl, and pal are registered trademarks of lattice semiconductor corporation. other product names used in this publication are for indenti?ation purposes only and may be trademarks of their respective com panies. 5v industrial combinations m4a5-32/32 -7, -10, -12, -14 ji, vi, vi48 m4a5-64/32 ji, vi, vi48 m4a5-96/48 vi m4a5-128/64 yi, vi m4a5-192/96 vi m4a5-256/128 -10, -12, -14 yi, vi, ai 5v commercial combinations m4a5-32/32 -5, -55, -6, -65, -7, -10, -12 -65, -7, -10, -12 jc, vc, vc48 m4a5-64/32 jc, vc, vc48 m4a5-96/48 vc m4a5-128/64 yc, vc m4a5-192/96 vc m4a5-256/128 yc, vc, ac


▲Up To Search▲   

 
Price & Availability of M4A3-128128-10VC

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X